CURRICULUM & SYLLABUS

(2018-REGULATION-REVISED)

(For the Students Admitted From 2019-20)

BACHELOR OF TECHNOLOGY

ELECTRONICS AND COMMUNICATION ENGINEERING (FULL TIME)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DECLARATION

I, **Dr. T. Godhavari**, Head, Dept of Electronics and Communication Engineering hereby declare that this copy of the syllabus (B.Tech Electronics and Communication Engineering UG – Full Time 2018 Regulation-Revised) is the final version which is being taught in the class and uploaded in our University website. I assure that the Syllabus available in our university website is verified and found correct. The Curriculum and Syllabi have been ratified by our Academic Council / Vice Chancellor.

Date: Signature

FACULTY OF ENGINEERING& TECHNOLOGY

B.TECH ECE FULL-TIME REGULATION – 2018 (REVISED)

(For students admitted from the Academic Year 2019-20)

BOS MEMBERS

M	EMBERSNAMES	DESIGNATION	FUNCTIONAL DESIGNATION
•	Dr.T.Godhavari	Professor / Head	Chairman
•	Dr.K.Senthil Kumar	Professor	Member
•	Dr.U.Jayalatsumi	Assistant Professor	Member
•	Dr.M.Janaki Rani	Professor	Member
•	Dr.M.Anand	Professor	Member
•	Dr.M.Kumaresan	Associate Professor	Member
•	Mr.K.Sudhaman	Associate Professor	Member
•	Dr.K.S.Thivya	Assistant Professor	Member
•	Mr.N.Lakshminarayanan	Assistant Professor	Member
•	Mrs.S.Anandhi	Assistant Professor	Member

EXTERNAL MEMBERS

•	Dr.G.Kavya	Professor / ECE,	S.A. Engineering College
•	Mr.S.BharathidasanManager -	Planning	External Industry member
	(RELI	ANCE JIO INFOCOMM (P)	Limited)

Mr.Suman Modak Research Scholar Alumnus (NIT, Silchar)

VISION AND MISSION OF THE DEPARTMENT

VISION

- To create centers of excellence in evolving competent core areas of Electronics and Communication Engineering and effectively respond to the demands of industry, R & D organizations.
- To emerge as a premier center of technology for research using open source tools

MISSION

- M1: To accomplish academic excellence through valuable teaching- learning processes to meet requirements of the industry and society.
- M2: To prepare students to face the challenges in the field of electronics and communication engineering and prepare them as responsible engineers with ethical values.
- M3: To promote the zeal for innovation and creativity among students towards research and development.
- **M4**: To augment students with skills needed for employability, entrepreneurship and for pursuing higher studies.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1:**To emphasize on the fundamental concepts of Electronics and Communication Engineering
- **PEO 2:** To provide a conducive academic learning environment by creating awareness on lifelong learning and promoting research to excel in their career through higher education.
- **PEO 3:** To impart analytical skills to explore socially acceptable and economically feasible solutions for the real life problems using modern design tools.
- **PEO 4:** To inculcate effective communication skills and ethical team work so as to be capable of functioning in diverse environments.
- **PEO 5:** To instill leadership traits among the students and hone their innovative skills to become successful entrepreneurs.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Upon the completion of program, graduates will be able to

- **PSO1**: Recognize, adapt the knowledge of science, engineering and mathematics for providing solutions to techno-economical problems in real world.
- **PSO2**: Formulate logical approach to solve engineering problems in core area of Electronics and Communication Engineering.
- **PSO3**: Demonstrate inter-disciplinary subject knowledge in diverse fields of Engineering and Technology.
- **PSO4**: Apply the emerging technology and open source tool for life-long learning to face the challenges in society.

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

- **PO-1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO-2** Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO-3 Design/development of solutions: Design solutions for complex engineering problems
 and design system components or processes that meet the specified needs with appropriate
 consideration for the public health and safety, and the cultural, societal, and environmental
 considerations.
- **PO-4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO-5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO-6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO-7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO-8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO-9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO-10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO-11** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO-12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

B.Tech. Electronics and Communication Engineering (Full Time)

Curriculum – 2018 Regulation(Revised)

		I SEMESTER					
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T /	P /	C
	CODE		Lb/		SLr	R	
			ETL				
1	BEN18001	Technical English –I	Ту	1	0/0	2/0	2
2	BMA18001	Mathematics – I	Ту	3	1/0	0/0	4
3	BPH18001	Engineering Physics –I	Ту	2	0/1	0/0	3
4	BCH18001	Engineering Chemistry –I	Ту	2	0/1	0/0	3
5	BES18001	Basic Electrical & Electronics Engineering	Ту	2	0/1	0/0	3
6	BES18002	Basic Mechanical & Civil Engineering	Ту	2	0/1	0/0	3
		PRACTICALS*					
1	BES18L01	Basic Engineering Workshop	Lb	0	0/0	2/0	1
2	BES18ET1	Orientation to Entrepreneurship & Project Lab	ETL	0	0/0	2/0	1

Credits Sub Total: 20

		II SEMESTER					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/	L	T/ SL	P/R	С
			ETL		r		
1	BMA18003	Mathematics – II	Ty	3	1/0	0/0	4
2	BPH18002	Engineering Physics –II	Ту	2	0/1	0/0	3
3	BCH18002	Engineering Chemistry – II	Ту	2	0/1	0/0	3
4	BES18003	Environmental Science*	Ту	1	0/0	0/0	0
		PRACTICALS*					
1	BEN18ET1	Communication Lab	ETL	1	0/0	1/0	1
2	BES18ET2	Basic Engineering Graphics	ETL	1	0/0	2/0	2
3	BES18L02	Integrated Physical Science Lab	Lb	0	0/0	2/0	1
4	BES18ET3	C Programming and Lab	ETL	1	0/0	2/0	2

Credits Sub Total: 16 TOTAL CREDITS: 36

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

		III SEMESTER					
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T/	P/R	С
	CODE		Lb/		SL		
			ETL		r		
1	BEC18001	Signals and Systems	Ty	3	1/0	0/0	4
2	BEC18002	Circuits and Networks	Ту	3	1/0	0/0	4
3	BEC18003	Digital Electronics	Ту	3	1/0	0/0	4
4	BCS18I01	C Programming with Linux	Ту	3	0/0	0/0	3
		PRACTICALS*					
1	BEC18ET5	Analysis of Solid State Devices	ETL	1	0/1	3/0	3
2	BEC18L02	Digital System Design Lab	Lb	0	0/0	3/0	1
3	BHS20ET5	Universal Human Values 2: Understanding Harmony	ETL	1	0/1	3/0	3
4	BCS18IL1	C Programming with Linux Lab	Lb	0	0/0	3/0	1

Credits Sub Total: 23

		IV SEMESTER					
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T /	P/R	C
	CODE		Lb/		SL		
			ETL		r		
1	BMA18007	Probability and Random Process	Ту	3	1/0	0/0	4
2	BEC18005	Control Systems for Electronics	Ту	3	1/0	0/0	4
3	BEC18006	Electronic Circuits	Ту	3	0/0	0/0	3
4	BEC18007	Communication Theory	Ту	3	0/0	0/0	3
5	BHS18NC1	The Indian Constitution* /	Ty	2	0/0	0/0	NC
3	/ BHS18NC2	The Indian Traditional Knowledge*	Ту	2	0/0	0,0	IVC
	•	PRACTICALS*					
1	BEC18ET1	Electrical Machines and PCB Design	ETL	1	0/1	3/0	3
2	BEC18L22	Circuits Design and Simulation Lab	Lb	0	0/0	3/0	1
3	BEC18L04	Digital Simulation Lab	Lb	0	0/0	3/0	1
5	BEC18TS1	Technical Skill 1	Lb	0	0/0	3/0	1
6	BEN18SK1	Soft Skill I (Career & Confidence Building)	ETL	0	0/0	3/0	1

Credits Sub Total: 21

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

		V SEMESTER					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SL r	P/R	С
1	BEC18008	Digital Signal Processing	Ty	3	1/0	0/0	4
2	BCS18I02	Computer Communication	Ty	3	0/0	0/0	3
3	BXX18EXX	Elective I	Ty	3	0/0	0/0	3
4	BXX180EX	Open Elective I	Ty	3	0/0	0/0	3
		PRACTICALS*					
1	BEC18ET2	Electromagnetic Waves and Transmission Lines	ETL	1	0/1	3/0	3
2	BEC18L06	Communication Lab- I	Lb	0	0/0	3/0	1
3	BEC18LXX	Lab Based on Elective	Lb	0	0/0	3/0	1
4	BCS18IL2	Computer Networks Lab	Lb	0	0/0	3/0	1
5	BEC18TS2	Technical Skill 2	Lb	0	0/0	3/0	1

Credits Sub Total: 20

		VI SEMESTER					
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T /	P/	C
	CODE		Lb/		SLr	R	
			ETL				
1	BEC18009	Digital Communication	Ту	3	1/0	0/0	4
2	BEC18010	Introduction to VLSI and Embedded System Design	Ту	3	0/0	0/0	3
3	BXX18EXX	Elective II	Ту	3	0/0	0/0	3
4	BXX180EX	Open Elective II	Ту	3	0/0	0/0	3
		PRACTICALS*					
1	BEC18ET3	Design and Implementation of Linear Integrated Circuits	ETL	1	0/1	3/0	3
2	BEC18L07	Communication Lab II	Lb	0	0/0	3/0	1
3	BEC18L08	VLSI and Embedded System Design Lab	Lb	0	0/0	3/0	1
4	BEN18SK2	Soft Skill II (Qualitative and Quantitative Skills)	ETL	0	0/0	3/0	1
5	BEC18L09	Mini Project/In plant Training/Industrial training	Lb	0	0	3/0	1
6	BEC18TS3	Technical Skill 3	Lb	0	0/0	3/0	1

Credits Sub Total: 21

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

	VII SEMESTER										
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T/ SL	P/	С				
	CODE		Lb/ ETL		r	R					
1	BEC18016	Digital Image Processing and its Applications	Ту	3	0/0	0/0	3				
2	BXX18EXX	Elective III	Ту	3	0/0	0/0	3				
3	BXX18EXX	Elective IV	Ту	3	0/0	0/0	3				
4	BMG18003	Principles of Management	Ту	3	0/0	0/0	3				
		PRACTICALS*			•						
1	BEC18ET4	Internet of Things	ETL	1	0/1	3/0	3				
2	BEC18L10	Microwave and Optical Communication Lab	Lb	0	0/0	3/0	1				
3	BEC18L11	Open CV - Python for Digital Image Processing Lab	Lb	0	0/0	3/0	1				
4	BEC18L12	Project Phase – I	Lb	0	0/0	3/3	2				
5	BHS18FLX	Foreign Language	Lb	0	0/0	3/0	1				
6	BXX18OLX	Open Lab	Lb	0	0/0	3/0	1				

Credits Sub Total: 21

		VIII SEMESTER								
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T /	P/R	C			
	CODE		Lb/		SLr					
			ETL							
1	BEC18012	Wireless Networks	Ту	3	1/0	0/0	4			
2	BEC18013	Cognitive Radio	Ту	3	0/0	0/0	3			
3	BXX18EXX	Elective V	Ту	3	0/0	0/0	3			
	PRACTICALS*									
1	BEC18L13	Project Phase – II	Lb	0	0/0	12/12	8			

Credits Sub Total: 18

Credit Summary

Semester: 1 : 20 Semester: 2 : 16 Semester: 3 : 23 Semester: 4 : 21 Semester: 5 : 20 Semester: 6 : 21 Semester: 7 : 21 Semester: 8 : 18 Total Credits: 160

	ELECTIVE I – Electronics Stream											
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T /	P/R	C					
	CODE		Lb/		SL							
			ETL		r							
1	BEC18E01	Microprocessor and Microcontroller	Ту	3	0/0	0/0	3					
2	BEC18E02	Semiconductor devices and its Applications	Ту	3	0/0	0/0	3					
3	BEC18E03	Basics of Robotics	Ty	3	0/0	0/0	3					
4	BEC18E04	C++ and Data structures	Ту	3	0/0	0/0	3					

	ELECTIVE I – Communication Stream										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/	L	T/ SLr	P/R	C				
			ETL								
1	BEC18E05	Antenna and Wave Propagation	Ту	3	0/0	0/0	3				
2	BEC18E06	Telecommunication Switching System	Ty	3	0/0	0/0	3				
3	BEC18E07	Real Time Operating Systems	Ту	3	0/0	0/0	3				
4	BEC18E08	Audio Signal Processing	Ту	3	0/0	0/0	3				

	ELECTIVE II – Electronics Stream											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ L T/ P/R (
	CODE		ETL		SLI							
1	BEC18E09	Intelligent Instrumentation	Ту	3	0/0	0/0	3					
2	BEC18E10	Advanced Microprocessors	Ту	3	0/0	0/0	3					
3	BEC18E11	Nano Electronics	Ту	3	0/0	0/0	3					
4	BEC18E12	Computer Architecture	Ту	3	0/0	0/0	3					

	ELECTIVE II – Communication Stream											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	C					
1	BEC18E13	Next Generation IP Networks	Ту	3	0/0	0/0	3					
2	BEC18E14	Neural Networks and its Applications	Ту	3	0/0	0/0	3					
3	BEC18E15	Optical Communication	Ту	3	0/0	0/0	3					
4	BEC18E16	Radar and Navigational aids	Ту	3	0/0	0/0	3					

	ELECTIVE III – Electronics Stream											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С					
1	BEC18E17	Advanced Digital System	Ту	3	0/0	0/0	3					
2	BEC18E18	Embedded System	Ту	3	0/0	0/0	3					
3	BEC18E19	Quantum Computing	Ту	3	0/0	0/0	3					
4	BEC18E20	Power Electronics	Ту	3	0/0	0/0	3					

	ELECTIVE III – Communication Stream										
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T/	P/R	C				
	CODE		Lb/		SLr						
			ETL								
1	BEC18E21	High Speed Switching Architecture	Ту	3	0/0	0/0	3				
2	BEC18E22	Information Coding Techniques	Ту	3	0/0	0/0	3				
3	BEC18E23	Microwave Engineering	Ту	3	0/0	0/0	3				
4	BEC18E24	Optical Network and Switching Techniques	Ту	3	0/0	0/0	3				

	ELECTIVE IV – Electronics Stream										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	C				
1	BEC18E25	Device Modeling	Ту	3	0/0	0/0	3				
2	BEC18E26	VLSI Technology	Ту	3	0/0	0/0	3				
3	BEC18E27	Bio Medical Instrumentation	Ту	3	0/0	0/0	3				
4	BEC18E28	Embedded Software Design	Ту	3	0/0	0/0	3				

	ELECTIVE IV – Communication Stream										
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T/	P/R	C				
	CODE		Lb/		SLr						
			ETL								
1	BEC18E29	Spread Spectrum Communication	Ty	3	0/0	0/0	3				
2	BEC18E30	Network Management	Ту	3	0/0	0/0	3				
3	BEC18E31	Satellite Communication	Ту	3	0/0	0/0	3				
4	BEC18E32	Operating Mobile Communication	Ту	3	0/0	0/0	3				

	ELECTIVE V - Electronics Stream											
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T /	P/R	C					
	CODE		Lb/		SLr							
			ETL									
1	BEC18E33	Introduction to MEMS system design	Ту	3	0/0	0/0	3					
2	BEC18E34	Analysis and Design of Analog IC's	Ту	3	0/0	0/0	3					
3	BEC18E35	Cyber Physical System	Ту	3	0/0	0/0	3					
4	BEC18E36	Digital Control System	Ту	3	0/0	0/0	3					

	ELECTIVE V – Communication Stream										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	C				
1	BEC18E37	Electromagnetic Interference and Compatibility	Ту	3	0/0	0/0	3				
2	BEC18E38	Advanced Concepts in Signal Processing	Ту	3	0/0	0/0	3				
3	BEC18E39	Ultra Wide Band Communication	Ту	3	0/0	0/0	3				
4	BEC18E40	Under Water Acoustic Signal Processing	Ту	3	0/0	0/0	3				

	Common Elective For Both Streams									
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T /	P/R	C			
	CODE		Lb/		SLr					
			ETL							
1	BEC18CE1	Sensors and its Applications	Ту	3	0/0	0/0	3			
2	BEC18CE2	Cryptography and Network Security	Ту	3	0/0	0/0	3			

		Lab Based on Electives					
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T /	P/R	C
	CODE		Lb/		SL		
			ETL		r		
1	BEC18L14	Microprocessor and Microcontroller Lab	Lb	0	0/0	3/0	1
2	BEC18L15	Basics of Robotics Lab	Lb	0	0/0	3/0	1
3	BEC18L16	C++ and Data Structures Lab	Lb	0	0/0	3/0	1
4	BEC18L17	Antenna and Wave Propagation Lab	Lb	0	0/0	3/0	1
5	BEC18L18	Telecommunication Switching Systems Lab	Lb	0	0/0	3/0	1
6	BEC18L19	Audio Signal Processing Lab	Lb	0	0/0	3/0	1

		OPEN ELECTIVES					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/ R	С
1	BEC18OE1	Internet of things and its applications	Ту	3	0/0	0/0	3
2	BEC18OE2	Cellular mobile communication	Ту	3	0/0	0/0	3
3	BEC18OE3	Satellite and its applications	Ту	3	0/0	0/0	3
4	BEC18OE4	Fundamentals of sensors	Ту	3	0/0	0/0	3
5	BEC18OE5	Basics of microprocessors and microcontrollers	Ту	3	0/0	0/0	3
6	BEC18OE6	Industry 4.0 concepts	Ту	3	0/0	0/0	3
		OPEN LABS					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/ R	С
1	BEC18OL1	Sensors and IOT Lab	Lb	0	0/0	3/0	1
2	BEC18OL2	Robotics Control Lab	Lb	0	0/0	3/0	1
3	BEC18OL3	Basics of MATLAB	Lb	0	0/0	3/0	1

SEMESTER I

Subject Code :BEN18001	Subject Name : Technical English – I	T/L/ ETL	L	T/SLr	P/R	С
	Prerequisite : None	Ty	1	0/0	2/0	2

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- Strengthen their vocabulary in both technical and business situations
- Get practice in functional grammar
- Learn the effective way of corresponding with officials
- Learn to give instructions, suggestions, and recommendations and comprehend and infer the information from the given passages.
- Train learners in organized academic and professional writing

Students completing the course would be able to

Students	completing the course would be able to
CO1	Recall basic grammar, spelling and phonetics concept
CO2	Discuss ideas and concepts in groups
CO3	Interpret charts, diagrams, reports and advertisements.
CO4	Analyze and evaluate scientific and technical concepts for organized oral and written presentation
CO5	Apprise, argue and support using critical judgements on any given topic

Mapping of Course Outcomes with Program Outcomes (POs)

Mapping o	Course	Outcome	s with i	rogran	ıı Outcı	omes (1	Os)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	3	1	1	1	1	3	1	3
CO2	3	3	3	3	1	3	3	1	3	3	1	3
CO3	3	2	1	3	3	2	2	1	2	3	1	3
CO4	3	3	3	3	1	2	1	3	2	3	1	3
CO5	1	2	2	3	3	2	2	1	3	3	2	3
COs/Ps	SOs	PSO1				PSO2			PSO3		PS	O4
CO	1	3			1			1				1
CO	2		3		1			1			1	
CO	3		3			1		1			1	
CO	CO4 3				1			1			1	
CO5 3				1		1			1			
3/2/1 indica	ates stren	oth of co	rrelation	1 3 – F	Tigh. 2	– Medi	ıım. 1 –	Low			L	

3/2/1 indicates strength of correlation 3 - High, 2 - Medium, 1 - Low

Category	Basic Sciences	Engg Sciences	Humanitie s & Social Sciences	Program	Program Electives	Open Electives	Practical / Project	Internships / Technical Skills	Soft Skills
			√						

BEN18001 TECHNICAL ENGLISH - I 1 0/0 2/0 2

UNIT I VOCABULARYBUILDING

6 Hrs

The concept of Word Formation-Root words and affixes from foreign languages and their use in English to form derivatives.-Homophones- Words often confused-Verbal analogy

UNIT II BASIC WRITING SKILLS

6 Hrs

Using Idioms and phrases in sentences-Sentence structures: statements, interrogative and imperative-Use of Conditional/if' clauses in sentences-Importance of proper punctuation-Creating coherence with sentence markers-Organizing coherent paragraphs in essays

UNIT III IDENTIFYING COMMON ERRORS IN WRITING

6 Hrs

Subject-verb agreement-Noun-pronoun agreement- Misplaced modifiers-Articles-Prepositions-Redundancies and Clichés

UNIT IV WRITING PRACTICE- NATURE AND STYLE OF TECHNICAL WRITING

6 Hrs

Describing Gadgets- Defining Concepts-Classifying data-Comprehension-Essay Writing-Informal and Formal Letter Writing:

UNIT V ORAL COMMUNICATION AND INTERACTIVE LEARNING

6 Hrs

(This unit involves interactive practice sessions in Language Lab)

Activities to develop knowledge in Word formation, Vocabulary and analytical thinking-Instructions and – Recommendations-Formal and Informal Registers in Speech-Listening and taking notes

Total no. of hours: 30

TEXT BOOKS:

Quest: A Textbook of Communication Skills, Vijay Nicole, 2017. Pushkala, R, Padmasani Kannan S, Anuradha V, Chandrasena M Rajeswaran

REFERENCES:

- 1. Practical English Usage. Michael Swan. OUP. 1995.
- 2. Remedial English Grammar. F.T. Wood. Macmillan. 2007
- 3. On Writing Well. William Zinsser. Harper Resource Book. 2001
- 4. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- 5. Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press. 2011.
- 6. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- 7. Pronunciation in Use, Mark Hancock. Cambridge University Press. 2012

Subject Coc BMA18001		Subjec	t Name:	Mather	matics –	I	T/L/ ETL	L	T/SL	P	'R	C	
DMATOUUI	L	Prerequ	uisite : N	lone			Ту	3	1/0	0,	/0	4	
L : Lecture					_	5	ect R : Res	search C	: Credit	s			
T/L/ETL : T		Lab / E	mbeddec	Theory	y and Lat	<u> </u>							
		Basic cor	ncepts in	Algebr	a								
• Use	the Ba	sic conc	epts in N	Matrices 4									
			•		gonometr	•••							
	•			_		•							
	Understand the Basic concepts in Differentiation												
 App 	ply the I	Basic co	ncepts in	Function	ons of Se	veral va	ıriables						
COURSE (OUTCC	MES (CO_{c}) . (3	2 5)									
Students co	mpleting	g the cou	ırse were	e able to		nts of M	Inthomatic	s seione	o & Eng	incoring r	nathamati	06	
Students co	mpleting Demor	g the counstrate k	urse were nowledg	e able to e of bas	ic conce		Sathematic					cs	
CO1 CO2	mpleting Demor Calcul	g the counstrate ka	urse were nowledg equired p	e able to e of bas paramete	ic concepers using	basic n	nathematic					cs	
Students co	mpleting Demor Calcul	g the counstrate ka	urse were nowledg equired p	e able to e of bas paramete	ic conce	basic n	nathematic					cs	
CO1 CO2	mpleting Demor Calcul Apply	g the counstrate kan the remathem	urse were nowledg equired patical tec	e able to e of bas paramete chniques	ic conceptor ic co	basic n	nathematic	cal theor	em, laws			cs	
CO1 CO2 CO3	mpleting Demor Calcul Apply Exami	g the counstrate knows the remarks at the remarks mathemathemathemathemathemathemathemathe	nowledgequired partical technology	e able to e of bas paramete chniques nethods,	ic concepers using s to solve tools and	basic ne proble	nathematic ms	ovide so	em, laws	and form	nulae	cs	
CO1 CO2 CO3 CO4	Demor Calcul Apply Exami	g the counstrate ke ate the re- mathem ne the re- ne scien	nowledgequired patical technology the control of th	e able to e of bas paramete chniques nethods,	ic conceptor conceptor is to solve tools and anciples, a	basic ne proble d techni	ms iques to pr	ovide so	em, laws	and form	nulae	cs	
CO1 CO2 CO3 CO4 CO5	Demor Calcul Apply Exami	g the counstrate ke ate the re- mathem ne the re- ne scien	nowledgequired patical technology the control of th	e able to e of bas paramete chniques nethods,	ic conceptor conceptor is to solve tools and anciples, a	basic ne proble d techni	ms iques to pr	ovide so	em, laws	and form	nulae		
CO1 CO2 CO3 CO4 CO5 Mapping o	Demor Calcul Apply Exami Combi	g the counstrate knows the remarked mathemathemathemathemathemathemathemathe	arse were nowledgequired patical technical technical technical trific & normes with	e able to e of bas paramete chniques nethods, nath prin	ers using s to solve tools an nciples, a	basic ne proble d technicapply to comes (ms iques to pr real time p	ovide so	lutions	and form	nulae		
CO3 CO4 CO5 Mapping of COs/POs	Demor Calcul Apply Exami Combi f Cours	g the counstrate ker ate the remathem ne the remathem ne scien e Outco	equired particular technology atticular technology	e able to e of bas paramete chniques nethods, nath prii h Progr PO4	ers using s to solve tools and nciples, a ram Out PO5	basic neeproble d technical polytocomes (PO6	iques to pr real time pr (POs)	ovide so	lutions s for acc	and formurate resu	lts PO11	PO12	
CO1 CO2 CO3 CO4 CO5 Mapping o COs/POs CO1	Demor Calcul Apply Exami Combi f Cours PO1	mathem ne the re ne scien e Outco PO2 3	equired partical technology and the control of the	e able to e of base paramete chniques nethods, nath prin PO4	ers using s to solve tools and neiples, a PO5	g basic neeproble d technic apply to comes (ms iques to pr real time p (POs) PO7	ovide so problems PO8	lutions s for acc	urate resu	lts PO11	PO12 3	
CO3 CO4 CO5 Mapping of COs/POs CO1 CO2	Demor Calcul Apply Exami Combi f Cours PO1 3	mathem ne the re ne scien PO2 3 3	equired particular technology atticular technology	e able to e of bas paramete chniques nethods, nath prin PO4 1 2	tools and concepts tools and concepts, are concepts and concepts, are concepts and concepts are concepts.	s basic note proble d technic apply to comes (real time property pr	eal theoremovide so problems PO8 1 1	lutions s for acc	urate resu PO10 3	lts PO11 1	PO12 3 3	

COs/PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1	1
CO2	3	1	1	1
CO3	3	1	1	1
CO4	3	1	1	1
CO5	3	1	1	1
TT/N/I/T · 1· 4	4 41 6 14*	TT TT' 1 N/ N/ 1'	т т	

H/M/L indicates strength of correlation H-High, M-Medium, L-Low

Category	Basic Sciences	Engg Sciences	Humaniti es & Social Sciences	Program core	Program Electives	Open Electives	Practical / Project	Internshi ps / Technical Skills	Soft Skills
	✓								

BMA18001 MATHEMATICS – I 3 1/0 0/0 4

UNIT I ALGEBRA

12 Hrs

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES

12 Hrs

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley –Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY

12 Hrs

Expansions of Sin $^{\}$, Cos $^{\}$ in powers of Sin $^{\}$ and Cos $^{\}$ - Expansion of Tan $^{\}$ - Expansions of Sin $^{\}$ and Cos $^{\}$ in terms of Sines and Cosines of multiples of $^{\}$ - Hyperbolic functions - Separation into real and imaginary parts.

UNIT IV DIFFERENTIATION

12 Hrs

 $Basic\ concepts\ of\ Differentiation-Elementary\ differentiation\ methods-Parametric\ functions-Implicit\ function-Leibnitz\ theorem (without\ proof)-Maxima\ and\ Minima-Points\ of\ inflection.$

UNIT V FUNCTIONS OF SEVERAL VARIABLES

12 Hrs

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total no. of hours: 60

TEXT BOOKS:

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

REFERENCES:

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P. Kandasamy, K. Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S. Chand & Co., Publishers, New Delhi (2000).
- 4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

Subject Code :BPH18001	Subject Name : Engineering Physics -I	T/L/ ETL	L	T/SLr	P/R	С
	Prerequisite : None	Ty	2	0/1	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- Outline the relation between Science, Engineering & Technology.
- Demonstrate competency in understanding basic concepts.
- Apply fundamental laws of Physics in Engineering & Technology.
- To identify & solve problems using physics concepts.
- Produce and present activities associated with the course through effective technical communication

COURSE OUTCOMES (COs): (3 – 5)

Students completing this course were able to

CO1	Demonstrate competency in understanding basic concepts.
CO2	Utilize scientific methods for formal investigations & demonstrate competency with experimental methods
	and verify the concept to content knowledge.
CO3	Identify and provide solutions for engineering problems.
CO4	Relate the technical concepts to day to day life and to practical situations.
CO5	Think analytically to interpret concepts.

Mapping of Course Outcomes with Program Outcomes (POs)

				_								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	2	2	1	1	1	2	1	1
CO2	3	3	2	2	2	2	1	1	2	2	1	1
CO3	3	3	3	2	2	2	1	1	1	2	1	2
CO4	3	3	2	2	1	2	2	1	2	2	1	2
CO5	3	3	2	1	1	2	1	2	1	2	1	1
COs/PS	SOs		PSO1		PSO2				PSO3	PS	O4	
CO1	-		3		1				1	1		
CO2	,		3			1			1		1	
CO3	}		3			1			1		1	
CO4	,		3	3 1					1		1	
CO5			3	3 1				1	1			
3/2/1 indica	ates stre	ngth of	2correl	ation 3	B – High	, 2 – Med	lium, 1 –	Low				

Category	Basic Sciences	Engg. Sciences	Humanities & Social Sciences	Program	Program Electives	Open Electives	Practical / Project	Internships / Technical Skills	Soft Skills
	✓								

BPH18001 ENGINEERING PHYSICS - I 2 0/1 0/0 3

UNIT I MECHANICS & PROPERTIES OF MATTER

9 Hrs

Mechanics: Introduction- scalar and vector quantities - rigid body - moment of inertia - forces in nature - Newton's laws of motion - derivation of Newton's second law of motion - motion of rocket — dynamical concepts - kinematics - conservation of energy and momentum - conservative and non-conservative forces - mechanics of continuous media - friction and its applications.

Properties of Matter: Elasticity - stress, strain and Hook's law - Poisson's ratio - three moduli of elasticity - twisting couple on a wire - viscosity - flow of liquid through a narrow tube: Poiseuille's law - Ostwald's viscometer - flow of blood in human body.

UNIT II SHM AND ACOUSTICS

9 Hrs

SHM: Simple harmonic motion - differential equation of SHM - graphical representation of SHM - average kinetic energy of vibration - total energy of vibration - free and forced vibrations - damped and undamped vibrations - resonance - transverse wave on a string - law of transverse vibration of string - verification of the laws of transverse vibration of string - standing waves.

Acoustics :Fundamentals of acoustics - reverberation- reverberation time - factors affect in acoustics Ultrasonics -Production of ultrasonic waves - detection of ultrasonic waves - acoustic grating - application of ultrasonic waves.

UNIT III WAVE OPTICS

9 Hrs

Huygen's principle - interference of light - wavefront splitting and amplitude - airwedge - Newton's rings - Michelson interferometer and its applications - Fraunhofer diffraction from a single slit - Rayleigh criterion for limit of resolution - diffraction grating and resolving power of a telescope.

UNIT IV ELECTROMAGNETIC THEORY

9Hrs

Electric field - coulomb`s law - alternating emf - rms and average value of an alternating current & voltage - resistors, capacitors and inductor - energy stored in a capacitor - LCR circuit & resonance - magnetism-definition - types - Biot Savart law - energy stored in a magnetic field - Domain theory - electromagnetic induction - self and mutual inductance - Faraday`s law of electromagnetic induction -Lenz law.

UNIT V LASER 9 Hrs

Laser principle and characteristics - amplification of light by population inversion - properties of laser beams: mono-chromaticity, coherence, directionality and brightness - different types of lasers - Ruby laser-Nd-YAG laser-He-Ne laser- CO_2 laser - semiconductor laser - applications of lasers in science, engineering and medicine.

Total no. of hours: 45

TEXT BOOKS:

- Brijlal, M. N. Avadhanulu & N. Subrahmanyam, Text Book of Optics, S. Chand Publications, 25th edition, 2012
- 2. R. Murugeshan, Electricity and Magnetism, S. Chand Publications, 10th edition, 2017
- 3. R. Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S. Chand Publications, 2016

REFERENCES:

- 1. Dr. Senthil Kumar Engineering Physics I VRB Publishers, 2016
- 2. N Subrahmanyam & Brijlal, Waves and Oscillations, Vikas Publications, New Delhi, 1988
- 3. N Subrahmanyam & Brijlal, Properties of Matter, S. Chand Co., New Delhi, 1982
- 4. N Subrahmanyam & Brijlal, Text book of Optics, S. Chand Co., New Delhi, 1989
- 5. R. Murugeshan, Electricity and Magnetism, S. Chand & Co., New Delhi, 1995
- 6. Thygarajan K & Ajay Ghatak, Laser Theory and Applications, Macmillan, New Delhi, 1981

Subject Code :BCH18001	Subject Name : Engineering Chemistry –I	T/L/ ETL	L	T/SLr	P/R	С
	Prerequisite : None	Ту	2	0/1	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- Providing an insight into basic concepts of chemical thermodynamics.
- To create awareness about the water quality parameters, water analysis and softening of water from industrial
 perspective.
- Imparting fundamentals of emf, storage and fuel cells.
- Creating awareness about corrosion and its control methods.

• Intro	oducing	g mod	ern mate	rials sucl	as co	nposite	s along w	ith bas	ic concep	ots of pol	ymer chemistr	y and plas	stics.	
				Os): (1–										
				se were										
CO1	Gain	a clea	r unders	tanding o	of the b	asic sci	ence as ap	plied t	o engine	ering pro	blems			
CO2	Desc	ribe th	ne ideas a	applied to	demo	nstrate	the compe	tence 1	hrough e	ffective	communication	n		
CO3	Reca	ll the i	informat	ion and a	nalyze	the hea	lth, ethica	l and e	ngineeri	ng proble	ems			
CO4	Ident	ify the	e environ	mental a	nd soci	etal iss	ues and de	esign s	olutions					
CO5	Appl	y appr	opriate t	echnique	s by re	cognizi	ng the nee	ed.						
Mappin			_		•		comes (Po							
COs/PO								PO11	PO12					
CO1		3	3	1	1	1	1	1	1	1	1	1	3	
CO2 3		3	3	2	3	1	1	1	1	1	3	1	2	
CO3 3		3	2	2	1	2	3	1	3	1	1	1	3	
CO4		3	1	1	3	3	3	3	1	1	1	1	3	
CO5		3	1	1	3	3	1	1	1	1	1	1	3	
COs/I	PSOs		PS	SO1			PSO2			PSO	03	PSO4		
CC)1			3			3			3		1		
CC)2			3			2			3			1	
CC				3			3			2			1	
CC				3			3		2				1	
CC)5			3			3		2				1	
3/2/1 inc	dicates strength of correlation 3 – High, 2 – Medium, 1 – Low													
Category	Basic	Sciences	Engg Sciences	Humanities & Social	Sciences	Program core	Program Electives	Open	Electives	Practical / Project	Internships / Technical Skills		Soft Skills	
	✓													

BCH18001 ENGINEERING CHEMISTRY – I 2 0/1 0/0 3

UNIT I CHEMICAL THERMODYNAMICS

8 Hrs

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G), Van't Hoff equations.

UNIT II TECHNOLOGY OF WATER

9 Hrs

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only).Boiler feed water and Boiler troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal and external conditioning – Lime soda, Zeolite, Demineralization methods. Desalination processes-RO and Electrodialysis .Domestic water treatment.

UNIT III ELECTROCHEMISTRY AND ENERGY STORAGE DEVICES 10 Hrs

Conductance – Types of conductance and its Measurement. Electrochemical cells – Electrodes and electrode potential, Nernst equation – EMF measurement and its applications. Types of electrodes- Reference electrodes- Standard hydrogen electrode- Saturated calomel electrode-Quinhydrone electrode – Determination of P^H using these electrodes. Reversible and irreversible cells– Fuel cells- H_2 – O_2 fuel cell, Batteries-Lead storage battery, Nickel– Cadmium and Lithium-Battery.

UNIT IV CORROSION AND PROTECTIVE COATING

9 Hrs

Introduction—Causes of Corrosion—Consequences- Factors affecting corrosion. Theories of corrosion-Chemical corrosion and Electrochemical corrosion. Methods of corrosion control — corrosion inhibitors, Sacrificial anode and Impressed current cathodic protection. Protective coatings- Metallic coatings- Chemical conversion coatings-paints-Constituents and functions.

UNIT V POLYMERS AND COMPOSITES

9 Hrs

Monomers – Functionality – Degree of polymerization-Tacticity. Polymers – Classification, Conducting Polymers, Biodegradable polymers- Properties and applications. Plastics – Thermoplastics and thermosetting plastics, Compounding of plastics – Compression moulding, injection moulding and extrusion processes. Polymer composites-introduction-Types of composites-particle reinforced-fiber reinforced-structural composites-examples. Matrix materials, reinforcement materials-Kevlar, Polyamides, fiber glass, carbon fibers, ceramics and metals.

Total no. of hours: 45

TEXTBOOKS:

- 1. S. Nanjundan & C. Sreekuttan Unnithan, "Applied Chemistry", Sreelakshmi Publications, (2007)
- 2. Dr. R. Sivakumar and Dr. N. Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

REFERENCES:

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", Dhanpat Rai publishing Co., (Ltd.) (2013).
- 2. J. C. Kuriacose & J. Rajaram, "Chemistry in Engineering & Technology", Tata Mc Graw Hill (1996).
- 3. B. R. Puri, L. R. Sharma & M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

Subject Code :BES18001	Subject Name :Basic Electrical & Electronics Engineering	T/L/ ETL	L	T/SLr	P/R	С
	Prerequisite : None	Ту	2	0/1	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- Understand the concepts of circuit elements, circuit laws and coupled circuits.
- Acquire knowledge on conventional &non-conventional energy production.
- Gain information on measurement of electrical parameters.
- Identify basic theoretical principles behind the working of modern electronic gadgets.
- Demonstrate digital electronic circuits and assemble simple devices.

COURSE OUTCOMES (COs): (3-5)

Students completing the course were able to

CO1	Interpret fundamental principles, laws and their practical applications.
CO2	Verify the concept of electric % magnetic circuits and interpret results
CO3	Analyze various sources of power & energy, generation methods & conservation
CO4	Identify & Apply schematic symbols and understand the working principles of electronic devices & instruments
CO5	Design analog & digital circuits using basic concept to solve problems

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	2	3	1	1	1	3	2	1	
CO2	3	3	3	3	3	3	3	1	1	2	2	1	
CO3	3	3	3	2	3	3	2	1	2	2	3	1	
CO4	3	3	3	2	3	2	2	1	3	3	2	1	
CO5	3	3	3	2	3	3	2	2	2	2	2	1	
COs/PSOs	Os/PSOs PSO1			PSO2				PSO3			PSO4		
CO1	3			1				1			1		
CO2	3			1			1			1			
CO3	3			1			1			1			
CO4	3			1			1			1			
CO5	CO5 3			1			1			1			

3/2/1 indicates strength of correlation 3 – High, 2 – Medium,1 – Low

		Category	Basic Sciences	Engg	Humanities & Social Sciences	Program	Program Electives	Open Electives	Practical / Project	Internships / Technical Skills	Soft Skills
--	--	----------	-------------------	------	------------------------------	---------	----------------------	-------------------	------------------------	--------------------------------------	-------------

BES18001 **BASIC ELECTRICAL & ELECTRONICS ENGINEERING**

0/1 0/0

UNIT I ELECTRIC CIRCUITS

9Hrs

Electrical Quantities - Ohms Law - Kirchhoff's Law - Series and Parallel Connections - Current Division and Voltage Division Rule - Source Transformation - Wye (Y) - Delta (Δ) , Delta (Δ) - Wye (Y) Transformation - Rectangular to Polar and Polar to Rectangular.

UNIT II MACHINES & MEASURING INSTRUMENTS

9Hrs

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor - Construction & Principle of operation of a Transformer - PMMC - Moving Iron types of meter – Single Phase Induction Type Energy Meter.

UNIT III **BASICS OF POWER SYSTEM**

9 Hrs

Generation of Electric Power (Thermal, Hydro, Wind and Solar) - Transmission & Distribution of Electric Power – Types of Transmission & Distribution Schemes – Representation of Substation.

UNIT IV ELECTRON DEVICES

9 Hrs

Passive Circuit Components-Classification of Semiconductor-PN Junction Diode-Zener diode- Construction and Working Principle – Applications--BJT-Types of configuration-JFET.

UNIT V DIGITAL SYSTEM

9 Hrs

Number System - Binary, Decimal, Octal, Hexadecimal - Binary Addition Subtraction, Multiplication & Division-Boolean Algebra - Reduction of Boolean Expressions - Logic Gates - De-Morgan's Theorem, Adder – Subtracted.

Total no. of hours: 45

TEXT BOOKS:

- 1. D P Kothari, I J Nagrath, Basic Electrical Engineering, Second Edition, , Tata McGraw-Hill Publisher
- 2. A Course In Electrical And Electronic Measurements And Instrumentation, A. K. Sawhney, publisher **DHANPAT RAI&CO**
- 3. Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, B. L. Theraja, A. K. Theraja, publisher S.CHAND
- 4. Morris Mano, M. (2002) Digital Logic and Computer Design. Prentice Hall of India
- 5. Millman and Halkias 1991, Electronic Devices and Circuits, Tata McGraw Hill,

REFERENCES:

1. R. Muthusubramanian, S. Salivahanan, K A Muraleedharan, Basic Electrical, Electronics and Computer Engineering, Second Edition, Tata McGraw-Hill publisher.

Subject Code:	Subject Name: Basic Mechanical	T/L/	L	T/SLr	P/R	С
BES18002	& Civil Engineering	ETL				
	Prerequisite: None	Ту	2	0/1	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- To understand the fundamentals and applications of IC Engines, power plants, manufacturing processes and mechanics.
- To expose the students to the various construction materials and their applications.

	-F	ΓCOMES (COs): (3 – 5)											
Students con	1 0				working r	rincinles	of stea	m gene	rators, IC er	ngines and r	ower nlar		
					0 1	•				ignies and p	ower plai		
CO2					concepts		acturin	g proces	sses.				
CO3					Engineering mechanics atterials and their properties, used for construction purpose								
CO4	·		_							ırpose			
CO5	Apply the	he knowl	edge of	construc	tion for v	arious str	ructural	applica	tions.				
Mapping of	Course (Outcome	s with I	Program	Outcom	es (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	PO9	PO10	PO11	PO12	
CO1	3	1	1	1	1	2	2	3	3	3	1	3	
CO2	3	2	1	1	1	2	2	2	2	2	1	2	
CO3	3	3	2	1	1	1	2	2	2	2	1	2	
CO4	3	2	2	1	1	1	3	1	2	2	1	2	
CO5	3	2	2	1	1	1	3	2	2	2	1	2	
COs/PSOs	l l	PSO1			PSO2			PSC)3	PSO4			
CO1		3			1			1		1			
CO2		3			1			1			1		
CO3		3			1			1			1		
CO4		3			1			1		1			
CO5		3			1		1		1				
3/2/1 indicat	ates strength of correlation 3 – High, 2 – Medium, 1 – Low												
Category	Basic Sciences	Engg	Sciences	& Social Sciences	Program core	Program		Open Electives	Practical / Project	Internships / Technical	SKIIIS	Soft Skills	
		✓											

BES18002 BASIC MECHANICAL & CIVIL ENGINEERING 2 0/1 0/0 3

UNIT I THERMAL ENGINEERING

9Hrs

Classification of internal combustion engine – two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant.

UNIT II MANUFACTURING PROCESS

13Hrs

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations- fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns -Moulding tools - Types of moulding - Preparation of green sand mould -Operation of Cupola furnace.Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature.

UNIT III MECHANICS

9Hrs

Stresses and Strains – Definition – Relationship – Elastic modulus – Centre of gravity – Moment of Inertia – Problems. (Simple Problems Only).

UNIT IV BUILDING MATERIALS AND CONSTRUCTION

7Hrs

Materials: Brick - Types of Bricks - Test on bricks - Cement - Types, Properties and uses of cement - Steel - Properties and its uses - Ply wood and Plastics.

Construction: Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

UNIT V ROADS, RAILWAYS, BRIDGES & DAMS

7Hrs

 $Roads-Classification\ of\ roads-Components\ in\ roads-Railways\ -Components\ of\ permanent\ way\ and\ their\ function-Bridges-Components\ of\ bridges-Dams-Purpose\ of\ dams-Types\ of\ dams.$

Total no. of hours: 45

TEXT BOOKS:

- 1. S. Bhaskar, S. Sellappan, H. N. Sreekanth, (2002), "Basic Engineering" -Hi-Tech Publications
- 2. K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.
- 3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers
- 4. S.C. Sharma(2002), Basic Civil Engineering, Dhanpat Raj Publications

REFERENCES:

- 1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" –, Vikas Publications.
- 2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher

Subject Code :BES18L01	Subject Name :Basic Engineering Workshop	T/L/ ETL	L	T/SLr	P/R	С
	Prerequisite : None	Lb	0	0/0	2/0	1

 $L: Lecture \ T: Tutorial \ SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ T/L/ETL: Theory / Lab / Embedded Theory and Lab$

OBJECTIVES:

- Familiarize the plumbing tools, fittings, carpentry tools, etc.
- Identify basic electrical wiring and measurement of electrical quantities.
- Identify Electronic components ,logic gates and soldering process
- Display simple fabrication techniques
- Execute a project independently and make a working model

COURSE OUTCOMES (COs) : (3 – 5)

Students completing the course were able to

CO1	Demonstrate fitting tools and carpentry tools, &Perform the process of Filing, Chipping, and Cutting.
CO2	Perform the process of fabrication of tray, cones and funnels, Tee Halving Cross, Lap Joint Martise & Joints
CO3	Demonstrate various types of wirings and other equipment.
CO4	Measure fundamental parameters using the electronic instruments

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	1	2	1	3	3	3	1	3
CO2	3	2	1	1	1	2	1	2	2	2	1	2
CO3	3	3	1	1	1	1	1	2	2	2	1	2
CO4	3	2	1	1	1	1	1	1	2	2	1	2
CO5	1	1	1	1	1	1	1	1	1	1	1	1
COs/PSOs	SOs PSO1			PSO2				PSO3			PSO4	
CO1	3			3			2			3		
CO2	3			3			2			1		
CO3	CO3 3			3			1			1		
CO4	CO4 3			3			1			1		

3/2/1 indicates strength of correlation 3 – High, 2– Medium, 1 – Low

Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program	Program Electives	Open Electives	Practical / Project	Internships / Technical Skills	Soft Skills
							✓		

BES18L01	BASIC ENGINEERING WORKSHOP	0 0/0 2/0 1

MEP PRACTICE

1. FITTING:

Study of fitting tools and Equipments – Practicing, filing, chipping and cutting – making V-joints, half round joint, square cutting and dovetail joints.

2. CARPENTRY:

Introduction – Types of wood – Tools – Carpentry processes – Joints – Planning practice – Tee Halving Joint – Cross Lap Joint – Maritse and Tenon Joint – Dovetail Joint

3. SHEET METAL:

Study of tools and equipment's – Fabrication of tray, cones and funnels.

CIVIL ENGINEERING PRACTICE

- 1. Study of Surveying and its equipment's
- 2. Preparation of plumbing line sketches for water supply and sewage lines
- 3. Basic pipe connection using valves, laps, couplings, unions, reduces and elbows in house hold fittings

ELECTRICAL ENGINEERING PRACTICE

- 1. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 2. Measurement of energy using single phase energy meter.
- 3. Measurement of resistance to earth of an electrical equipment.
- 4. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 5. Fluorescent lamp wiring.
- 6. Stair case wiring

ELECTRONIC ENGINEERING PRACTICE

- 1.Study of Electronic components and equipment's Resistor, color coding measurement of AC signal parameter (peak- peak, rms period, frequency) using CRO
- 2. Soldering practice Components Devices and Circuits Using general purpose P

Total no. of hours:30

Abdul Kalam CoE for Innovation & Entrepreneurship

BES18ET1 Project Lab					P/R	С								
•		Project L	ab			-			ETL			r		
		Prerequis	ite : No	one					ETL		0	0/0	2/0	1
L : Lecture T/L/ETL :						Project I	R : Rese	earch C: 0	Credits					
OBJECT														
		w entreprei	neurshi	p Educa	ation trans	forms ind	ividuals	s into succ	essful	lead	ers.			
• Identif	y individ	lual potent	ial &S	have ca	reer drean	ns								
• Under	stand dif	ference bet	ween i	deas &	opportuni	ties								
• Identif	y compo	nents & cr	eate ac	tion pla	n.									
• Use br	ainstorm	ing in a gr	oup to	generate	e ideas.									
COURSE			•											
Students c														
CO1	Develop	Develop a Business plan & improve ability to recognize business opportunity												
CO2	Do a self analysis to build a entrepreneurial career.													
CO3	Articulate an effective elevator pitch.													
CO4	Analyze the local market environment & demonstrate the ability to find an attractive market													
C05	Identify the required skills for entrepreneurship & develop													
Mapping	of Cours	e Outcom	es with	Progr	am Outco	omes (PO	s)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO1	0 F	PO11	PO12
CO1	2	2	2	3	2	2	2	1	2		2		2	1
CO2	3	2	1	3	2	3	2	3	3		3		2	2
CO3	2	2	2	2	1	3	1	3	3		3		1	1
CO4	3	3	2	2	2	2	1	3	2		2		3	2
CO5/PSO	2	2	2	3	2	2	3	3	2		2		3	1
COS/150	5	PSO1 3			PSO2			PSO3			PSO4			
CO2		3			1 1			3				<u> </u>		
CO3		3			1			3					1	
CO4		3			1		3				1			
CO5		3			1			3					1	
3/2/1 indic	cates stre	ength of co	orrelati	ion 3-	- High, 2 -	– Mediun	n, 1 – I	Low		ıI				
Category	Basic Sciences	Engg Sciences	Humanities	& Social Sciences	Program	Program Electives	Open		Practical / Project		Internships / Technical Skills			Soft Skills
									~	/				

BES18ET1 ORIENTATION TO ENTREPRENEURSHIP & PROJECT LAB

0 0/0 2/0 1 (ETL)

UNIT I CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR 6 Hrs

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes –

UNITII ENTREPRENEURIAL STYLE

6 Hrs

Entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

UNIT III DESIGN THINKING

6 Hrs

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch

UNIT IV RISK MANAGEMENT

6 Hrs

Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

UNIT V PROJECT

6 Hrs

How to choose a topic – basic skill sets necessary to take up a project – creating a prototype – Pitch your project – Project presentation.

Total no. of hours: 30

SEMESTER II

					SE	MEST	ER II							
Subject Co BMA180		Subjec	t Name : Ma	themati	cs – II			T/L/ ETL	L	T/SL	r P/R	С		
		•	uisite : None					Ty	3	1/0	0/0	4		
			Supervised L bedded Theor			ect R:	Research	1 C: Cre	edits					
OBJECTIV	ES:													
• Unde	erstand t	he Basic	concepts in I	ntegratio	on									
Ident	ify the I	Basic cor	ncepts in Mult	iple inte	egrals									
• Use t	the Basic	c concen	ts in Ordinary	Differe	ential ear	uations								
		_	•		_	autions								
**	•		epts of Analy		•									
• Anal	yze the l	Basic co	ncepts of Vec	tor Calc	ulus									
COURSE O														
			se were able to			C 3 / 1	.•	• 0		•	.4 .4			
CO1	Demonstrate knowledge of Basic concepts of Mathematics science & Engineering mathematics													
CO2	Calculate the required parameters using basic mathematical theorems, laws and formulae													
CO3	Analyze the problem, find solution & interpret the data													
CO4	Examine the relevant methods, tools and techniques to provide solutions													
CO5			tific & math p				ime prol	olems fo	r accui	ate result	ts			
			nes with Prog				1	1	1	r				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			PO12		
CO1	3	3	1	1	2	2	1	1	2	2	1	3		
CO2	3	3	2	1	2	3	1	1	3	3	1	2		
CO3	3	3	2	2	2	3	1	1	3	3	1	2		
CO4	3	3	2	1	1	2	1	1	2	3	1	2		
CO5	3	3	2	2	2	2	1	1	2	3	1	2		
COs/PSOs		PSC)1		PSO2			PSO3		PSO4				
CO1		3			1			1			1			
CO2		3			1			1			1			
CO3		3			1		1 1							
CO4	3 1 1 1													
CO5	oc etron	3	orrelation 3	High	1 2 Ma	dium 1	1000	1			1			
J14/1 Muical	cs sitell	gui vi C	orrerativii 3	– 111gii,	, <u>~</u> – wie	uiuiii, 1	- 10W			Ţ				
Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program	core	Program	Electives	Open	Electives	Practical / Project	Internships / Technical Skills	Soft Skills		

BMA18003 MATHEMATICS – II 3 1/0 0/0 4

UNIT I INTEGRATION

12 Hrs

Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts Definite integrals – Properties of definite integrals – Problems on finding Area and Volume using single integrals (simple problems).

UNIT II MULTIPLE INTEGRALS

12 Hrs

Double integral in Cartesian and Polar Co-ordinates – Change of order of integration – Triple integral in Cartesian Coordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

UNIT III ORDINARY DIFFERENTIAL EQUATIONS

12 Hrs

First order differential equations – Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

UNIT IV THREE DIMENSIONAL ANALYTICAL GEOMETRY

12 Hrs

Direction Cosines and Ratios – Equation of a straight line – Angle between two lines – Equation of a plane – Co-planar lines – Shortest distance between skew lines – Sphere – Tangent plane.

UNIT V VECTOR CALCULUS

12 Hrs

Scalar and Vector functions – Differentiation – Gradient, Divergence and Curl – Directional derivatives – Irrotational and Solenoidal fields– Line, Surface and Volume integrals – Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

Total no. of hours: 60

TEXTBOOKS:

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

REFERENCES:

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P. Kandasamy, K. Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S. Chand& Co.,

Publishers, New Delhi (2000).

4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

B.Tech ECE 2018 Regulation(Revised)

Subject Code:	Subject Name : Engineering Physics – II	T/L/ETL	L	T/SLr	P/R	С
BPH18002	Prerequisite : None	Ty	2	0/1	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- Design, conduct experiment and analyze data.
- Develop a Scientific attitude at micro and nano scale of materials

Under	stand th	e conce	pts of M	Iodern P	hysics								
• Apply	the scie	ence of r	material	s to Eng	ineering	g & Tecl	hnology						
COURSE OU Students com		•	, ,		0								
CO1						onducti	ng resea	rch rela	ted to	cont	ent know	ledge and lat	oratory
	skill	s.											
CO2	App	ly know	ledge a	nd conc	epts in a	ndvance	d materi	als and c	devices	5.			
CO3	Acq	uired A	nalytica	l, Mathe	matical	skills fo	or solvin	ng engine	eering	probl	lems.		
CO4	Abil	Ability to design and conduct experiments as well as function in a multi-disciplinary team.											
CO5	Generate analytical thought to interpret results & place them within a broader context												
Mapping of C	Course (Outcom	es with	Progra	m Outc	omes (F	POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	1	1		2	1	1
CO2	3	3	1	2	2	1	1	1	1		2	1	1
CO3	3	3	3	3	2	2	2	1	1		2	1	1
CO4	3	3	3	3	2	2	1	1	3		2	1	1
CO5	3	2	2	2	2	1	1	1	2		2	1	1
COs/PSOs		PSO1			PSO2			PSO3	3			PSO4	
CO1		3			1			1				1	
CO2		3			1			1				1	
CO3		3			1			1				1	
CO4		3			1			1				1	
CO5		3			1			1				1	
3/2/1 indicate	s streng	th of co	rrelatio	on 3 – 1	High, 2	– Medi	um, 1 –	Low					
Category	Basic	Engg Sciences	Humaniti	Social Sciences Program core			Electives	Open	Open Electives		Practical / Project	Internship s/ Technical Skills	Soft Skills
	✓												

BPH18002 ENGINEERING PHYSICS - II 2 0/1 0/0 3

UNIT I QUANTUM PHYSICS

9Hrs

Quantum free electron theory - DE Broglie waves - derivation of DE Broglie waves - Davisson and Germer experiment - uncertainty principle - electron microscope - scanning electron microscope - physical significance of wave function - Schrodinger wave equation and its applications - Fermi energy- effective mass - phonons - Fermi function-density of states - origin of bandgap in solids - 1D scattering of electrons in periodic potential.

UNIT II SEMICONDUCTORS

9 Hrs

Introduction - properties of semiconductors - classification of semiconductor - effect of temperature in semiconductor - hole current - carrier concentration in intrinsic semiconductor (electron and hole density) - variation of Fermi energy level and carrier concentration with temperature in an intrinsic semiconductor - carrier transport - diffusion - drift - mobility - Hall effect - determination of Hall coefficient and its applications - diodes.

UNIT III LIGHT SEMICONDUCTOR INTERACTION

9 Hrs

Types of electronic materials: metals, semiconductors and insulators - qualitative analysis of extrinsic semiconductor & its applications - optical transition in bulk semiconductors: absorption, spontaneous and stimulated emission - exciton and its types - traps and its types - color centers and its types and importance - luminescence - classifications of luminescence based on excitation - optical loss and gain - Photovoltaic effect - Photovoltaic potential - spectral response - solar energy converters - solar cells.

UNIT IV OPTO ELECTRONIC DEVICES

9 Hrs

Photodetectors - photoconductors - photodiodes principle, construction, working and characteristics - Phototransistors - Laser diodes - LED theory, construction and working - seven segment display, advantages of LED - LCD theory, construction and working.

UNIT V ENGINEERED MATERIALS

9 Hrs

Classification of engineered materials - nano phase materials - its synthesis and properties - shape memory alloys and its applications - biomaterials - non linear materials - metallic glasses - metamaterials - homo and hetero junction semiconductors - semiconducting materials for optoelectronic devices - quantum wells, wires and dots.

Total no. of hours: 45

TEXT BOOKS:

- (1) P.K. Palanisamy, Semiconductor Physics and Optoelectronics, SciTech Publications, 2010
- (2) Jyoti Prasad Bandyopadhyay, Semiconductor Devices, S. Chand Publications, 2014
- (3) Charles Kittal, Introduction to Solid State Physics, Wiley Publications, 2012.

REFERENCE BOOKS:

- (1) S. Shubhashree, S. Bharathi Devi & S. Chellammal Madhusudanan, Engineering Physics, Sree Lakshmi Publications, 2004
- (2) G. Senthil Kumar, N. Iyandurai, & G. Vijayakumar, Material Science, VRB Publishers, 2017
- (3) R.Murugeshan & Kiruthigasivaprakash, Modern Physics, 14th edition, S. Chand & Co, 2008
- (4) Pallab Bhattacharya, Semiconductor optoelectronic devices, second edition, Pearson Education, 2003
- (5) V Rajendran & A. Marikani, Materials Science, Tata McGraw- Hill, New Delhi, 2004

Subject (BCH180			Subjec	t Name	: Engin	eering	Chemis	try – II		/L/ TL	L	T/ SL r	P/R	С	
		=	Prereq	uisite: 1	None				Т	y	2	0/1	0/0	3	
L : Lectu							: Project	R:Re	esearch (C: Cr	edit	S			
T/L/ETL	: The	ory / La	ab / Em	bedded '	Theory	and Lab									
OBJEC	TIVES	S:													
													nent systen		
					enginee	ring mat	erials su	ch as ce	ement, lu	brica	nts,	abrasi	ves, refract	ories,	
	•		no mater		on the	principle	e of che	mietry	involvin	r diff	orai	nt annl	ication orie	ntad	
	onics	iait a st	Juliu Kii	owieuge	on the	principio	es of che	illisti y	IIIVOIVIII	g uiii	CI CI	н аррі	ication one	iiteu	
		icing sa	alient fe	atures of	f fuels a	nd comb	ustion.								
•]	o giv	e an ov	erview	on mode	ern anal	ytical tec									
COURS															
Students						1 1									
CO1		ll, predict the consequences and apply appropriate techniques.													
CO2	Cate	egorize the engineering materials and analytical tools through appropriate communication													
CO3	Anal	llyze the environmental dimension and identify ethical principles to design solution.													
CO4	Reco	ognize the essential information for continuing professional development													
CO5	Appl	ply relevant instrumentation techniques through basic science to solve complex problems.													
Mapping	of C	ourse (Outcom	es with	Progra	m Outc	omes (P	Os)							
COs/PO)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO1	0 PO11	PO12	
CO1		3	1	3	3	1	1	1	1	1		1	1	3	
CO2		3	3	1	3	3	1	3	1	1		3	1	3	
CO3		3	3	3	1	1	3	1	3	1		1	1	3	
CO4		3	1	1	1	1	1	3	1	1		3	1	3	
CO5		3	1	3	1	3	1	1	1	1		1	1	3	
COs/PS	Os	•	PSO1			PSO3	SO3 PSO4								
CO1			3			3									
CO2			3			1			3				2		
CO3			3			2			3				1		
CO4 3						1			3						
CO5			3			1			3				1		
3/2/1 ind	icates	streng	th of co	orrelatio	on 3 –	High, 2	– Medi	um, 1-	- Low						
				S							_			.~	
Category	Categorize		Engg Sciences Humanities		& Social Sciences	Program core	Program	Electives	Open Electives		Practical / Project		Internships Technical Skills	Soft Skills	

BCH18002 ENGINEERING CHEMISTRY – II

2 0/1 0/0 3

UNIT I PHASE EQUILIBRIA

8 Hrs

Introduction – Definition of terms involved in phase rule. Derivation of Gibbs phase rule – Applications to one component system – water system. Binary system – Eutectic system – Pb – Ag system, Bi – Cd system . Thermal analysis – Cooling curves.

UNIT II MATERIAL CHEMISTRY

10 Hrs

Cement – Manufacture, Chemistry of setting and hardening. Lubricants – Requirements of good lubricants, Mechanism, Properties of lubricants, Classification – Examples. Abrasives–Classification – Moh's Scale-Hard and soft abrasives, Preparation of artificial abrasives (silicon carbide, boron carbide), Applications of abrasives. Refractories – Classification, Properties-Refractoriness, RUL, Porosity, Thermal spalling Alloys Classification of alloys – Purpose of making alloys - Ferrous and non-Ferrous alloys - Heat treatment Nano materials – properties, carbon nano tubes – properties, fabrication – carbon arc method, laser vaporization method.

UNIT III APPLIED CHEMISTRY

9 Hrs

Soaps and detergents: Soaps – Saponification of oils and fats, manufacture of soaps, classification of soap – soft soap, medicated soap, herbal soap, shaving soap and creams.

Detergents – Anionic detergents – manufacture and applications, Comparison of soaps and detergents.

Rocket propellants and explosives: Rocket propellants – characteristics, solid and liquid propellants – examples. Explosives- Introduction, characteristics, classification, Oxygen balance, preparation, properties and uses of detonators, low explosives and high explosives, Dynamites, Gun cotton, Cordite.

Food adulterants- Common adulterants in different foods – milk and milk products, vegetable oils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages, Contamination with toxic chemicals – pesticides and insecticides.

UNIT IV FUELS & COMBUSTION

9 Hrs

Introduction to Fuels – classification – Calorific value – GCV, LCV. Solid Fuels–Coal-Proximate Analysis, Metallurgical Coke–Manufacture of Metallurgical Coke – Liquid Fuel–Refining of Petrol, Synthetic Petrol–Manufacturing Process–Hydrogenation of Coal, Polymerization, Cracking–Knocking–Octane Number–Leaded Petrol (or) Anti–knocking – Cetane Number–Ignition Lag–Gaseous fuels–CNG–LPG–Water Gas, Producer gas–Biogas- Combustion– Flue Gas analysis– Orsat's method.

UNIT V ANALYTICAL AND CHARACTERIZATION TECHNIQUES 9 Hrs

Electron microscopes: Scanning electron microscope & Transmission electron microscope, instrumentation and applications Absorption and Emission Spectrum - Beer - Lambert's law. Visible and UV Spectroscopy - instrumentation - Block diagram - working. IR Spectroscopy - instrumentation - Block diagram - molecular vibrations - stretching and bending - H_2O , CO_2 . -Characterization of some important organic functional groups. Chromatographic techniques - column, thin layer and paper.

Total no. of hours: 45

TEXTBOOKS:

- 1. C. S.Unnithan, T. Jayachandran& P. Udhayakala, "Industrial Chemistry", Sreelakshmi Publications (2009).
- 2. Dr. R. Sivakumar and Dr. N. Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

REFERENCES:

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", Dhanpat Rai publishing Co., (Ltd.) (2013).
- 2. B. R. Puri, L.R. Sharma &M.S. Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

B.Tech ECE 2018 Regulation(Revised)

Subject Code : BES18003	Subject Name: Environmental Science (Non- Credited)	T/L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	Ty	1	0/0	0/0	0

 $L: Lecture \ T: Tutorial \ SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ T/L/ETL: \ Theory \ / \ Lab \ / \ Embedded \ Theory \ and \ Lab$

OBJECTIVES:

- To acquire knowledge of the Environment and Ecosystem & Biodiversity
- To acquire knowledge of the different types of Environmental pollution
- To know more about Natural Resources
- To gain understanding of social issues and the Environment
- To attain familiarity of human population and Environment

COURSE OUTCOMES (COs): (3-5)

Students completing the course were able to

	-
CO1	To know about Environment and Ecosystem & Biodiversity
CO2	To clearly comprehend air, water, Soil, Marine, Noise, Thermal and Nuclear Pollutions and Solid
	Waste management and identify the importance of natural resources like forest, water, and food
	resources
CO3	To discover water conservation and watershed management
CO4	To identify its problems and concerns climate change, global warming, acid rain, ozone layer
	depletion etc.,
CO5	To explain family welfare programmes and role of information technology in human health and
	environment

Mapping of	Course	Outcomes	with Progra	am Outcomes	(POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	3	3	2	1	1	1	2
CO2	1	1	1	1	1	2	3	1	1	2	1	2
CO3	1	1	1	1	1	2	3	2	1	1	1	2
CO4	1	1	1	1	1	2	3	2	1	2	1	2
CO5	1	1	1	1	1	2	3	1	1	2	1	2
COs/PS	Os		PSO1			PSO2			PSO3			O4
CO1			1		1				1	1		
CO2			1			1		1			1	
CO3	CO3 1				1 1			1				
CO4			1			1		1			1	
CO5			1			1		1			1	1

3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low

Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skills	Soft Skills
			✓						

BES18003 ENVIRONMENTAL SCIENCE 1 0/0 0/0 0

UNIT I ENVIRONMENT AND ECOSYSTEM

3Hrs

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem - producers, consumers and decomposers – energy flow in the ecosystem. Biodiversity at national and local levels – India

UNIT II ENVIRONMENT POLLUTION

3Hrs

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

UNIT III NATURAL RESOURCES

3Hrs

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

3Hrs

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents ,central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

3Hrs

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS – women and child welfare – role of information technology in environment and human health

TEXT BOOKS:

- 1. Gilbert M. Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw Hill, New Delhi, (2006).

Total no. of hours:15

REFERENCES:

- 1. Vairamani, S. and Dr. K. Sankaran. Elements of Environmental and Health Science. Karaikudi: KPSV Publications, 5th Edition, July, 2013.
- 2. Ifthikarudeen, Etal, Environmental Studies, Sooraj Publications, 2005.
- 3. R. Murugesan, Environmental Studies, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

Subject Code: BEN18ET1	Subject Name: Communication Lab	T/L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	ETL	1	0/0	1/0	1

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

The students should be able to

- Use appropriate vocabulary and structure for effective interpersonal and academic communication
- Interpret charts, diagrams, advertisements, etc.
- Participate in group discussions and present projects effectively
- Present project and ideas effectively
- Attend Interviews

COUR	COURSE OUTCOMES (COs): (3 – 5)									
Students completing the course were able to										
CO1	Use appropriate vocabulary and structure for effective interpersonal and academic communication									
CO2	Interpret charts, diagrams, advertisements, etc.									
CO3	Participate in group discussions and present projects effectively									
CO4	Present project and ideas effectively									
CO5	Attend Interviews									

11 0						,	•						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	1	3	1	1	1	1	3	3	3	
CO2	3	2	1	3	3	1	3	1	1	3	2	3	
CO3	3	3	3	3	1	3	3	1	3	3	3	3	
CO4	2	3	3	3	1	1	1	3	3	3	1	3	
CO5	1	1	1	1	1	2	3	3	3	3	3	3	
COs/PSOs PSO1				PSO2			PSO	3	PSO4				
CO1		3			1			1		1			
CO2		3						1		1			
CO3		3			1		1			1			
CO4		3			1			1		1			
CO5		3			1			1 1					
3/2/1 indi	cates str	ength of	correlat	ion 3 –	- High, 2	– Mediu	m, 1 – l	Low					
Category	Basic Sciences	Engg	Sciences Humaniti	es & Social Sciences	Program core	Program		Open Electives	Practical / Project	Internship s/ Technical	Skills	Soft Skills	
									✓				

BEN18ET1	COMMUNICATION LAB	1 0/0 1/0 1			

UNIT I 6Hrs

LISTENING AND SPEAKING - INFORMAL AND FORMAL CONTEXTS

UNIT II 6Hrs

INTERPRETATION OF CHARTS / DIAGRAMS - GROUP DISCUSSION

UNIT III 6Hrs

COMPEERING - ANCHORING - WELCOME SPEECH - VOTE OF THANKS

UNIT IV 6Hrs

FORMAL PRESENTATION - POWER POINT PRESENTATION - POSTER PRESENTATION

UNIT V 6Hrs

INTERVIEW

Total no. of hours: 30

SUGGESTED READINGS:

- 1. Practical English Usage. Michael Swan. OUP. 1995
- 2. Remedial English Grammer. F.T.wood. Macmillan.2007
- 3. Study writing. Liz Hamp -Lyons and Ben Heasly. Cambridge University Press. 2006.
- 4. Communication skills. Sanjay Kumar and Pushp Lata. Oxford University Press.2011.
- 5. Exercises in spoken English. Parts. I III. CIEFL, Hyderabad. Oxford University Press
- 6. Pronunciation in use, Mark Hancock. Cambridge University Press. 2012

Subjec BES18		le:	Subject Graphi		Basic Eng	ineering			T/L ETI		T/SLr	P/R	С		
			Prerequ	isite: Nor	ne				ETI	_ 1	0/0	2/0	2		
					ed Learnin		ject R:	Researc	h C: Cr	edits					
OBJE															
•	To a	cquire k	cnowledge	in geome	etrical dra	wing									
•	To e	xpose tl	ne student	s in comp	uter aided	l drafting	5								
COUR	SE O	UTCO	MES (Co	s): (3-5)	5)										
Student	ts con	npleting	the cours	e were ab	ole to										
CO1	Gair	n knowl	knowledge on Drawing standards and angle of projection												
CO2	Dra	w projec	projections of planes, solid, on planes of projection												
CO3	App	ly the k	y the knowledge of development to find lateral surface area of solids.												
CO4	Visu	isualize and draw Isometric and orthographic projections													
CO5	Apply the knowledge of projection in Building drawing														
Mappi	ng of	Course	Outcom	es with P	rogram (Outcome	s (POs)								
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	l	3	3	3	3	2	2	1	1	3	3	1	3		
CO2	2	3	3	3	3	2	2	1	1	3	3	1	3		
CO3	3	3	3	3	1	2	2	1	1	2	2	1	2		
CO4	1	3	3	2	2	2	3	1	2	3	3	1	3		
COS	5	3	3	3	2	3	1	2	2	3	3	1	3		
COs/P			PSO1			PSO2			PSO:	3		PSO4			
CO			3			1			1			1			
CO			3			1			1			1			
CO			3			1			1 1			1			
CO			3			1			1			1			
		tes strei		rrelation	3 – Hig		edium,	l – Low							
Category	Basic Sciences Engg Sciences Sciences Armanities		& Social Sciences	Program core	Program	cu ves	Open Electives Practical / Project		Internships / Technical Skills		Soft Skills				

BES18ET2 BASIC ENGINEERING GRAPHICS 1 0/0 2/0 2

CONCEPTS AND CONVENTIONS (Not for examination)

6 Hrs

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 – 2001: Technical products Documentation – Size and layout of drawing sheets – IS 9606 – 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS: 15021 – 2001: Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cycloids.

UNIT I PROJECTION OF POINTS, LINES AND PLANE SURFACES

9 Hrs

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT II PROJECTION OF SOLIDS

9 Hrs

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to one reference plane and perpendicular to the other.

UNIT III DEVELOPMMENT OF SURFACES AND ISOMETRIC PROJECTION 9 Hrs

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones. Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT IV ORTHOGRAPHICS PROJECTIONS

6 Hrs

Orthographic projection of simple machine parts – missing views

BUILDING DRAWING

Building components – front, Top and sectional view of a security shed.

UNIT V COMPUTER AIDED DRAFTING

6 Hrs

Introduction to CAD – Advantages of CAD – Practice of basic commands – Creation of simple components drawing using CAD software.

Total no. of hours: 45

Note: First angle projection to be followed.

TEXT BOOKS:

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

Subject Code: BES18L02	Subject Name: Integrated Physical Science Lab	T/L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	Lb	0	0/0	2/0	1

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- Demonstrate the ability to make physical measurements & understand the limits of precision in measurements.
- Display the ability to measure properties of variety of electrical, mechanical, optical systems.
- To help learners measure conductivity and EMF using electrical equipment.
- To understand the analytical skills through chromatography & viscometry
- To familiarize the concepts of cheminformatics

COURSE OUTCOMES (COs): (3-5)

Students completing the course were able to

CO1	Recognize the correctness and precision in the results of measurements.
CO2	Construct and compare the properties of variety of mechanical, optical, electrical and electronic systems.
CO3	Familiarizing the titration methods using conductometry & potentiometry
CO4	Developing the Research spirit through the knowledge of Cheminformatics & Analytical skills.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	3	3	1	1	1	1	2	1	1	
CO2	3	3	2	3	3	2	1	1	1	2	1	1	
CO3	3	3	2	3	3	1	1	1	3	1	1	1	
CO4	3	3	3	3	3	1	2	2	3	1	3	2	
COs/PSOs		PSO1			PSO2	•		PSO3			PSO4		
CO1		3			1			1			1		
CO2		3			1			1			1		
CO3		3			1			1			1		
CO4	3			1			1				1		
2/2/1 indica	tog gtmax	noth of o	ammalatio	. 2 I	Tich 2	Madium	. 1 T			•			

3/2/1 indicates strength of correlation 3 – High, 2 – Medium, 1 – Low

Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skills	Soft Skills
							✓		

BES18L02 INTEGRATED PHYSICAL SCIENCE LAB 0 0/0 2/0 1

LIST OF EXPERIMENTS

- DETERMINATION OF COEFFICIENT OF VISCOSITY OF A GIVEN LIQUID BY POISEUILLE'S METHOD.
- 2. PARTICLE SIZE DETERMINATION USING LASER SOURCE.
- 3. DETERMINATION OF NUMERICAL APERTURE OF AN OPTICAL FIBER.
- 4. SPECTROMETER- REFRACTIVE INDEX/DISPERSIVE POWER/I-D CURVE.
- 5. POTENTIOMETER RESISTANCE OF A WIRE.
- 6. TRANSISTOR CHARACTERISTICS INPUT RESISTANCE, OUTPUT RESISTANCE AND GAIN.
- 7. STUDIES ON ACID-BASE CONDUCTOMETRIC TITRATION.
- 8. DETERMINATION OF REDOX POTENTIALS USING POTENTIOMETRY.
- 9. DETERMINATION OF $R_FVALUES$ OF VARIOUS COMPONENTS USING THIN LAYER CHROMATOGRAPHY.
- 10. VISCOSITY STUDIES USING DIGITAL CAPILLARY VISCOMETER.
- 11. COMPUTE THE STRUCTURES OF THE GIVEN POLYMERS, DRUGS, BIOMOLECULES USINGCHEM DRAW.
- 12. STUDIES ON POTENTIAL ENERGY SURFACE OF THE GIVEN MOLECULES.
- 13. ESTIMATE NMR SPECTRA FROM A CHEM DRAW STRUCTURE.

Total no. of hours 30

Subject Co BES18ET3	de:	Subject 1	Name: (C Prog	rammin	g And L	ab		T/L/ ETL	L	T/SL r	P/R	С
		Prerequis	ite : No	ne					ETL	1	0/0	2/0	2
L : Lecture ' T/L/ETL : T							R : Res	earch C:	Credits				
• Outline		es of C L	anguage).									
• Apply f	undamer	ntals in C	progran	nming.									
 Produce 	and pre	sent activ	vities ass	sociated	with the	e course.							
COURSE (Students con	npleting	the cour	se were	able to									
CO1 Un	derstand	nd the concepts of C programming											
CO2 De	velop C	p C Programs using basic programming constructs											
CO3 Cre	ate Prog	e Programs with arrays, structures, functions, pointers and file handling											
CO4 Wr	ite diver	e diversified solutions for applications using C language											
Mapping of	Course	Outcom	nes with	Progra	m Outo	comes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11 I	PO12
CO1	3	3	3	2	2	2	1	1	3	3	1		3
CO2	3	3	3	2	2	2	1	1	3	3	1		3
CO3	3	3	3	1	1	2	1	1	2	2	1		2
CO4	3	3	2	1	1	3	1	2	3	3	1		3
COs/PSOs		PSO1			PSO2			PSO3			PS	D4	
CO1		3			1			1		1			
CO2	CO2 3			1			1			1			
CO3	CO3 3			1			1			1			
CO4		3			2			1			1		
	1			on 3 –			1			1			

Program Electives

Program core

Humanities & Social Sciences

Engg Sciences

Category

Basic Sciences Internships / Technical Skills

Soft Skills

Practical / Project

Open Electives BES18ET3 C PROGRAMMING AND LAB 1 0/0 2/0 2

UNIT I INTRODUCTION

9 Hrs

Fundamentals, C Character set, Identifiers and Keywords, Data Types, Variables and Constants, Structure of a C Program, Executing a C Program.

UNIT II EXPRESSION AND STATEMENT

9 Hrs

Operators, Types-Complex and Imaginary, Looping Statement-For, While, Do, Break, continue, Decision Statement-If, If else, Nested if, Switching Statement, Conditional Operator.

UNIT IIIARRAYS AND FUNCTIONS

9 Hrs

Defining an Array, Using Array elements as counters, Generate Fibonacci number, Generate Prime Numbers, Initializing Arrays, Multidimensional Arrays, Defining a Function, Function call -types of Function calls – Function pass by value -Function pass by reference, Write a Program in Recursive Function.

UNIT IVSTRUCTURES AND POINTERS

9 Hrs

Working with Structures -Introduction -Syntax of structures -Declaration and initialization -Declaration of structure variable -Accessing structure variables, Understanding Pointers -Introduction -Syntax of Pointer.

UNIT V STRINGS AND FILE HANDLING

9 Hrs

Strings -Syntax for declaring a string -Syntax for initializing a string -To read a string from keyboard, Files in C -File handling functions -Opening a File closing a file --example: fopen, fclose -Reading data from a File- Problem solving in C

Total no .of hours: 45

- 1. <u>www.spoken-tutorials.org</u>
- 2. http://www.learn-c.org/

REFERENCES:

- 1. Stephen G. Kochen "Programming in C- A complete introduction to the C Programming Language. Third Edition, Sams Publishing -2004
- 2. Ajay Mital, "Programming in C: A Practical Approach", Pearson Publication-2010

LIST OF PROGRAMS

- 1. Write a program to check 'a' is greater than 'b' or less than 'b' Hint: use if statement.
- 2. Write another program to check which value is greater 'a', 'b' or 'c'. Hint: use else-if statement. (Take values of a, b, c as user inputs)
 - 3. Write a Program to find the sum of the series: $x + X^3/3! + X^5/5! + \dots X^n/n!$
 - 4. Write a C Program to solve a Quadratic Equation by taking input from Keyboard
 - 5. Write a C Program to arrange 20 numbers in ascending and descending Order. Input the Numbers from Keyboard
 - 6. Write a C Program to Multiply a 3 x 3 Matrix with input of members from Keyboard
 - 7. Write a program that takes marks of three students as input. Compare the marks to see which student has scored the highest. Check also if two or more students have scored equal marks.
 - 8. Write a program to display records of an employee. Like name, address, designation, salary.
 - 9. Write a C program; declare a variable and a pointer. Store the address of the variable in the pointer. Print the value of the pointer.
 - 10. Write a C program to concatenate String 'best' and String 'bus'. Hint: strcat(char str1, char str2);
 - 11. Explore the other functions in string library.
 - 12. Write a program to create a file TEST. Write your name and address in the file TEST. Then display it on the console using C program.

B.Tech ECE 2018 Regulation(Revised)

SEMESTER-III

Subject BEC180		Sul	oject N	ame:	Sign	als An	d Syste	ems				T / L/ ETL	L	T/SLr	P/I	2	С
		Pre	requisite	e: Matl	nema	tics II						Ту	3	1/0	0/0)	4
L: Lectu								Projec	ct R:I	Resea	rch C	Credits	8				
T/L/ETI			Embedo	ded Th	eory	and La	ab										
OBJEC	• T	o study 1	the analy	ysis of	cont	inuous	time s	ystems	using	Lapla	ace an	d Fourie	r transfor	ms.			
COURS The stud				os):(3-	5)												
CO1	Class	sify cont	Ty continuous and discrete time signals and systems. The continuous signals and its spectrum with transforms.														
CO2	Anal	yze cont	inuous	signals	and	its spe	ctrum v	with tra	ansforn	ns.							
CO3	Dete	rmine th	e respor	nse of	conti	nuous	time sy	stems	with tra	ansfo	rms aı	nd state	variable a	pproach.			
CO4	Anal	yze disc	rete sigr	nals an	d its	spectri	um with	ı transf	forms.								
CO5	Dete	rmine th	rmine the response of discrete time systems with transforms and state variable approach.														
Mappin			•										- 11				
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12																	
CO	1	3	3	2		2	1	1	-		-	-	-	-		2	
CO	2	3	3	3		3	3	2	-		-	-	-	-		2	
CO.	3	3	3	3		3	3	3	-		-	-	-	-		2	
CO ₂	4	3	3	3		3	2	2	-		-	-	-	-		2	
CO	5	3	3	3		3	3	3	-		-	-	-	-		2	
COs / P	SOs		PSO1				PS	O2				PSO3			PSO ₂	4	
CO	1		3				3	3				3			2		
CO			3				3					3			2		
CO:			3				3					3			2		
CO			3				3					3			2		
CO			3				3					3			2		
3/2/1 inc	dicate	s streng	th of co	rrelat	ion	3 – Hi	gh, 2 –	Medi	um, 1 -	- Lov	v						
Category		Basic Sciences	Engineering	Sciences	Humanities	and Social Sciences	Program	Core	Program	Electives	Onen	Electives	Practical / Project	Internships /	Skill	Soft Skills	1

BEC18001	SIGNALS AND SYSTEMS	3 1/0	0/0 4

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS

10 Hrs

Continuous Time Signals (CT signals), Discrete Time Signals (DT Signals) – Step, Ramp, Pulse, Impulse, Exponential, Classification of CT and DT signals – Periodic and aperiodic, Random Signals, CT Systems and DT Systems, Classification of Systems – Linear Time Invariant Systems (LTI).

UNIT II ANALYSIS OF C.T SIGNALS

12 Hrs

Fourier series Analysis, Spectrum of C.T. Signals, Fourier Transform and Laplace Transform – Properties of Fourier Transform - Applications in Signal Analysis.

UNIT III LTI – CT SYSTEMS

12 Hrs

Differential Equation, Block Diagram Representation, Impulse Response, Step Response, Convolution Integral, Frequency Response, Fourier and Laplace Transforms in Signal Analysis, State Equations and Matrix.

UNIT IV ANALYSIS OF D.T. SIGNALS

13 Hrs

Spectrum of D.T. Signals, Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT), Properties of DFT, Properties of Z – Transform in Signal Analysis, Inverse Z-Transform.

UNIT V LTI – DT SYSTEMS

13 Hrs

Difference Equations, Block Diagram Representation, Impulse Response, Convolution, Frequency Response, Z – Transform Analysis, Realization of Digital Filters – Direct Form-I, Direct Form-II, Transposed, Parallel, Cascade Structure, State Variable Equation and Matrix.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 60

Textbooks:

- 1. Alan V Oppenheim, "Signals and Systems", Prentice Hall of India Pvt. Ltd, 2nd Edition, 1997.
- 2. Roger E. Zeimer et al, "Signals and Systems": Continuous and Discrete, McMillan, 2nd Edition, 1990
- 3. Hwei P. Hsu, Schaum's Outline Series, "Signals and Systems", Mc Graw Hill Companies, 2nd Edition.

- 1. Douglas K Lindner, "Signals and Systems", McGraw Hill International, 1999.
- 2. Simon Haykin and Barry Van Veen," Signals and Systems", John Wiley and Sons, Inc., 1999.
- 3. Robert A. Gabel and Richard A. Roberts, "Signals and Linear Systems", John Wiley, 3rdEdition, 1987.

Subject Code:	Subject Name: Circuits And Networks	T / L/ ETL	L	T/SLr	P/R	С
BEC18002	Prerequisite: Basic Electrical and Electronics Engineering &	Ту	3	1/0	0/0	4
	Mathematics II					

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To understand the concept of circuit elements lumped circuits, waveforms, circuit laws and network reduction
- To solve the electrical network using mesh and nodal analysis by applying network theorems
- To learn methods of circuits analysis in time domain and frequency domain
- To understand the concept of resonance in Series and parallel circuits and to know the concepts of coupled circuits.
- Obtaining equations to solve circuits in steady state and transient state

							iy state aii	a transion	a state				
COURSE	OUTCO	OMES (C	COs): (3- 5)The	student	will be	able to						
CO1									circuit laws				
CO2	Anal	yze and s	olve a g	iven elec	ctrical ne	twork t	ising mesh	and nod	al analysis				
CO3	Done	their inf	erences	to analy:	ze circui	ts analy	sis in time	domain	and frequenc	y doma	in		
CO4									esonance and				
CO5	Appl	y their ur	nderstan	ding to d	erive the	analyz	e the equa	tions with	n respect to s	solving	circuit tra	nsients.	
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs									PO10	PO11	PO12		
CO1	3	3	2	2	1	1	-	-	-	-	-	2	
CO2	3	3	3	3	3	2	-	-	-	-	-	2	
CO3	3	3	3	3	3	3	-	-	-	-	-	2	
CO4	3	3	3	3	2	2	-	-	-	-	-	2	
CO5	3	3	3	3	3	3	-	-	-	-	-	2	
COs /PSOs	S	PSO1	-		PSO	2		PSC	03		PSO	4	
CO1		3			3			2 2					
CO2		3			3			2			2		
CO3		3			3			2			2		
CO4		3			3			2		2			
CO5		3			3			2	•		2		
H/M/L ind	icates S	trength o	of Corre	elation	H- Hig	h, M- N	Iedium, I	L-Low		1			
Ĺ	ences	ering	nces	Humanities and Social Sciences	Program Core		Program Electives	Open Electives	Practical / Project		Internships / Technical Skill	Soft Skills	
Category	Basic Sciences	Engineering	Sciences	Human Social	Progra		Prograr	Open	Practica	-	Techn	Sof	

BEC18002 CIRCUITS AND NETWORKS 3 1/0 0/0 4

UNIT I BASIC CIRCUIT CONCEPTS

12 Hrs

V-I Relationships Of R, L And C – Independent Sources – Dependent Sources – Kirchhoff's Laws - Simple Resistive Circuits – Network Reduction – Voltage Division – Current Division – Source Transformation. Formation of Matrix Equations and Analysis Using Mesh-Current and Node-Voltage Methods.

UNIT II AC FUNDAMENTALS

12 Hrs

AC Quantity, Phasor Representation – Analysis Of Simple Series And Parallel Circuits – Power And Power Factor – Analysis Mesh Current And Node Voltage Methods – Series Resonance And Parallel Resonance

UNIT III NETWORK THEOREM AND DUALITY

12 Hrs

Useful Circuit Analysis techniques - Linearity and superposition, Thevenin and Norton Equivalent Circuits, Maximum Power Transfer, Super position theorem –principle of duality.

UNIT IV TRANSIENT ANALYSIS

12 Hrs

Transient Concepts-Behavior of Circuit Elements Under Switching Conditions and Their Representation- Forced and Free Response of RL, RC And RLC Circuits with D.C. And Sinusoidal Excitations Using Laplace Transform Method – Natural Frequency and Damping Factor.

UNIT V COUPLED CIRCUITS

12 Hrs

Mutual Inductance – Coefficient of Coupling – Ideal Transformer – Analysis Of Multi Winding Couple Circuits – Single & Double Tuned Circuits – Critical Coupling.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 60

Textbooks:

- 1. A. Sudhakar & Shyanmugam S. Palli "Circuits & Network Analysis & Synthesis", 4th Edition, Tata McGraw Hill, 2010
- 2. Bruce Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric Circuits", Thomson Learning, 1st Edition, 2002
- 3. M.L Soni& J.C. Gupta, "Electric Circuit Analysis", Dhanpat Rai & Sons, New Delhi, 1999.

- 1. Hyatt, W.H. Jr and Kimmerly, J.E., "Engineering Circuits Analysis", McGraw Hill International Editions, 1993.
- 2. Administer, J.A., "Theory and Problems of Electric Circuits", Schaum's Outline Series McGraw Hill Book Company, 2nd Edition, 1983.
- 3. Paranjothi S.R., "Electric Circuit Analysis", New Age International Ltd., Delhi, 2nd Edition, 2000.
- 4. Artice.M. Davis, "Linear Circuits Analysis", Thomson Learning 2002
- 5. Roy Choudhury, "Networks and Systems", New Age International Ltd, 1992

Subject Code:	Subject Name : Digital Electronics	T / L/ ETL	L	T/SLr	P/R	С
BEC18003	Prerequisite: Basic Electrical and Electronics Engineering	Ту	3	1/0	0/0	4

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To give an conceptual understanding about Boolean algebra, demorgans theorem, simplification of Boolean expression, Karnaugh map and Quine Mcklusky methodology.
- To Design and implement logic gates, combinational logic circuits, PAL, PLA and FPGA.
- To Design and implement sequential logic circuits like Flip flops, counters and shift registers.
- To analyzer state diagram, state tables and its reduction and design and implement synchronous and asynchronous sequential circuits.
- To study different logic families and classify different types of memories.

COURSE OUTCOMES (COs): (3-5)

The Student will be able to

CO1	Apply Karnaugh map and Quine McCluskey methodology to simplify Boolean expressions.
CO2	Design and implement combinational logic circuits.
CO3	Explain the basic building blocks of sequential circuits and its applications.
CO4	Demonstrate the ability to design and implement synchronous and asynchronous sequential circuits
CO5	Compare the digital logic families and classify different types of semiconductor memories.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	-	-	-	ı	-	-	2
CO2	3	3	3	3	3	-	-	-	-	-	-	2
CO3	3	3	3	2	3	-	-	-	-	-	-	2
CO4	3	3	3	3	2	-	2	-	-	-	-	2
CO5	3	3	-	2	1	-	2	-	1	-	-	1

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	-
CO2	3	3	2	2
CO3	3	3	2	2
CO4	3	3	2	2
CO5	2	1	1	2

3/2/1 indicates Strength of Correlation 3- High,2- Medium,1-Low

	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships Technical Skill	Soft Skills
--	----------	-------------------	-------------------------	--------------------------------------	--------------	----------------------	-------------------	------------------------	-----------------------------------	-------------

BEC18003	DIGITAL ELECTRONICS	3	1/0	0/0	4

UNIT I BOOLEAN ALGEBRA

12 Hrs

Boolean Algebra – De Morgan's Law - Simplifications of Boolean Expression – Sum of Products and Product of Sums – Karnaugh Map (up to 5 variables) – Quine McClusky Method of Simplification (Including Don't care conditions)

UNIT II COMBINATIONAL LOGIC

12 Hrs

Logic gates – AND, OR, NOT, NOR, NAND and EX-OR – Combinational Logic- Arithmetic Circuits – Half adder – Full adder, Half Subtractor - Decimal Adder – Excess 3 Adder – Code Converters – Multiplexer – Demultiplexer- Encoder – Decoder – Design of General Combinational Logic Circuit. PAL, PLA and FPGA.

UNITHI SEQUENTIAL LOGIC DESIGN

12 Hrs

Building Blocks Of Sequential Logic-Rs, JK, Master-Slave, D And T Flip-Flop, Design of Asynchronous and Synchronous Counters - Binary and BCD Counters - Shift Registers.

UNIT IVSEQUENTIAL MACHINES

12 Hrs

Basic Models Of Sequential Machines – Concept Of State Diagram - State Table – State Reduction - Design and Implementation of Synchronous Sequential Circuits. Design and Implementation of Asynchronous Sequential Circuits.

UNIT V LOGIC FAMILIES AND MEMORY DEVICE

12 Hrs

Characteristics of RTL, DTL, TTL, Families – Schottky, Clamped TTL, ECL, IIL –Classification of memories – ROM - ROM organization - PROM – EPROM – EPROM – EAPROM, RAM

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 60

Textbooks:

- 1. Charles H. Roth, "Fundamentals of Logic Design", cengage Learning, 5th Edition
- 2. FLOYD: "Digital Fundamentals", 10th Edition Universal Book Stall, New Delhi. 1993
- 3. Morris Mano, "Digital Electronics and Design", Prentice Hall of India, 2000

- 1. John F. Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
- 2. Jayadeep chakravarthy "Digital electronics and logic design", Universities press. (2012)
- 3. John. M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 4. Charles H. Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 5. Donald P. Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006.
- 6. Donald D. Givone, "Digital Principles and Design", TMH, 2003

Subject Code: BCS18I01	Subject Name: C Programming With Linux	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: C Programming and lab	Ty	3	0/0	0/0	3
L: Lecture T: T	utorial SLr: Supervised Learning P: Project R: Research C	C: Credits	;	•		

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To understand and develop well-structured programs using C language
- Problem solving through computer programming
- Familiarity of programming environment in Linux operating system
- Comfortably use basic UNIX/Linux commands from the command line.
- Be knowledgeable enough about basic UNIX/Linux shell scripting to be able to successfully read and write bash shell script.

COURSE OUTCOMES (COs): (3-5)

The students will be able to

- CO₂ Write C programs using arrays, strings and structures.
- CO₃ Apply Pointers to access arrays and Functions to process files.
- CO₄ Interpret basic hardware components and installation of Linux operating system
- **CO5** Design and implement basic Linux commands and Shell Programming

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	1	-	-	-	-	-	2
CO2	2	1	2	3	2	2	-	-	-	-	-	2
CO3	3	1	3	3	2	2	-	-	-	-	-	2
CO4	3	2	2	1	2	-	-	-	-	-	-	2
CO5	3	1	3	2	2	1	-	-	-	-	-	2

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	-	3	2
CO2	3	-	3	3
CO3	3	-	3	3
CO4	3	-	3	3
CO5	3	-	3	3

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
		✓							

BCS18I01	C PROGRAMMING WITH LINUX	3	0/0	0/0	3	
----------	--------------------------	---	-----	-----	---	--

UNIT I BASICS OF C PROGRAMMING

9Hrs

Introduction to programming paradigms – Structure of C program – C programming: Data Types – Storage classes – Constants – Enumeration Constants – Keywords – Operators: Precedence and Associativity – Expressions – Input/Output statements, Assignment statements – Decision making statements – Switch statement – Looping statements – Pre-processor directives – Compilation process

UNIT II ARRAYS, STRINGS AND STRUCTURES

9Hrs

Introduction to Arrays: Declaration, Initialization – One dimensional array – Two dimensional arrays – String operations: length, compare, concatenate, copy – Selection sort, linear and binary search - Structure – Nested structures – Pointer and Structures – Array of structures.

UNIT III FUNCTIONS AND POINTERS

9 Hrs

Introduction to functions: Function prototype, function definition, function call, Built-in functions—Recursion—Pointers—Pointer operators—Array of pointers—Files—Types of file processing: Sequential access, Random access—Command line arguments

UNIT IV INTRODUCTION TO LINUX

9 Hrs

Introduction: Comparison of various operating systems, Advantages of Linux, Flavors of Linux, Installation notes, Linux Loader - file system concept, Concepts of devices, various kinds of hardware: Hard disk, floppy disk drivers, CD – ROM drives, Mouse, Memory devices, Printer devices.

UNIT V LINUX COMMANDSAND SHELL PROGRAMMING

9 Hrs

Linux commands and Utilities - Backup and Restore: Back up Strategies and Operations, Restoring files Introduction to Shell Programming: Basics, Control Statements, shell variables, filters, Interrupt, parsing options, file generation

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Balaguruswamy, E(1990) Programming in C(3rd ed.), Tata McGraw-Hill Publishing Company Limited.
- 2. Reema Thareja, "programming in C", Oxford university press, second edition, 2016.
- 3. Bill Ball & DavidPitts Red Hat "Linux7Unleashed", Techmedia SAMS Publication.

- 1. Kernighan, B.W and Ritchie, D.M, "The C programming language", second edition, Pearson Education, 2006.
- 2. Byron Gottfried & Jitender Chhabra (2010), Programming with C (Schaum's Outlines Series), McGraw Hill Education.
- 3. K N King (2008), C Programming(2nd ed.), W. Norton & Company.
- 4. Evi Nemeth, Garth Snyder, Scott Seebass, Trent R. Hein UNIX System Administration Handbook (3rd. ed), Person Education Asia(LPE).
- 5. Mark G. Sobell (2013), Practical Guide to Linux Commands Editor, Pearson.
- 6. Goodlife (2006), Running Linux(5th ed.), Om Books Publisher

Subject Code:	Subject Name: Analysis Of Solid-State Devices	T / L/	L	T/SLr	P/R	C			
BEC18ET5		ETL							
	Prerequisite: Basic Electrical and	rerequisite: Basic Electrical and ETL 1 0/1 3							
Electronics Engineering									
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits									
T/I /ETI . The com	// ob/Each added Theory and Lob								

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To learn the theory of semiconductor devices such as diodes and zener diode
- To study the working and biasing of bipolar junction transistors both PNP and NPN.
- To understand the construction and operation of FET and MOSFET and their biasing.
- To study behavior of power electronic devices like SCR, UJT, etc and photo devices.
- To study the small signal model and analysis of transistors and FET

COURSE OUTCOMES (COs): (3-5)	
The students will be able to	

The students	The students will be able to									
CO1	Learn semiconductor devices like diodes and zener diode									
CO2	Know working and biasing of bipolar junction transistors.									
CO3	Understand the construction and operation of FET and MOSFET									
CO4	Study the behavior of power electronic and photo electronic devices.									
CO5	Analyze transistors and FET using small signal model									

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	3	2	2	2	2	-	1	-	-	-	-	-
CO2	2	2	2	3	2	1	-	-	-	-	-	-
CO3	3	3	3	3	2	-	-	-	-	-	-	-
CO4	3	2	2	2	2	-	1	-	-	-	-	1
CO5	3	3	2	2	2	1	-	-	-	-	-	-

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	2	-	2
CO2	3	2	-	-
CO3	3	2	1	-
CO4	3	2	-	-
CO5	3	3	_	1

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
			✓					

BEC18ET5 ANALYSIS OF SOLID STATE DEVICES

1 0/1 3/0 3

UNIT I SEMICONDUCTOR DIODE

9 Hrs

Theory of PN Junction Diode – VI characteristics – Static and Dynamic Resistance – Effect of Temperature on Diodes – Space Charge and Diffusion Capacitance - Zener Diode – Avalanche and Zener Break Down Mechanisms – Zener Diode as a Voltage Regulator.

Experiments

Characteristics Of P-N Junction & Zener Diode

UNIT II BJT & BIASING 9 Hrs

Principles of Transistor Action – Current Components – Cut Off, Active & Saturation Region – I/P & O/P characteristics CE, CB and CC. Small Signal Large Signal 'β', Break Down & Switching Characteristics – Transistor Biasing – Bias Stabilization – Bias Compensation – Thermal Runaway – Design with Heat Sink. **Experiments**

I/P & O/P Characteristics Of Bjt

UNIT III FET& MOSFET 9 Hrs

Construction Feature & Working Principles of JFET, MOSFET Depletion and Enhancement Mode, Biasing of FET, and MOSFETS, Transmission Gate using CMOS.

Experiments

Characteristics Of Jfet Mosfet Characteristics

UNIT IV POWER DEVICES

9 Hrs

Charge Transfer Device, UJT, SCR, Diac, Triac, GTO, MCT and Introduction to Gallium Arsenide Devices, FinFET, LDR, Photo Voltaic cell, Varactor diode.

Experiments

Characteristics Of SCR And UJT

UNIT V SMALL SIGNAL MODEL

9 Hrs

Small Signal Model of Transistor- Analysis of Amplifiers using Small Signal Model. Common Emitter, Common Base, Common Collector, Common Source, Common Drain, Common Gate, Multistage Amplifiers.

Experiments

Analysis of BJT in CB, CE and CC Configuration

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Nandita Das Gupta, Amitava Das Gupta, "Semiconductor Devices", Prentice Hall of India, 2005
- 2. Sedra and Smith, "Microelectronic Circuits", Oxford University Press, 2004
- 3. Mohammed Gausi and Spencer, "Introduction to Electronics Circuit Design", Pearson Education, 2004

Reference Books:

- 1. Boylestad, Robert. L and Nashelsky Louis, "Electronic Devices and Circuit theory", Prentice
- 2. Hall of India,6th Edition, 2001William & Harris, "Electronic Devices and Circuits", Tata McGraw Hill International Editions, 2000
- 3. Millman Halkias, "Electron Devices", Tata McGraw Hill, 2000.

B.Tech ECE 2018 Regulation(Revised)

- 4. Donald Neamam, "Microelectronics", Tata McGraw Hill, 2007.
- 5. Sedra Smith, "Micro Electronic Circuits" Fifth edition, 2013.

L : Lecture T T/L/ETL: Th OBJECTIV	T	Pre	Subject Name: Digital System Design Lab T / L T/SLr P/R L/ ETL											
T/L/ETL: The OBJECTIV	T		requisite		Electric	cal and I	Electron	ics		Lb	0	0/0	3/0	1
OBJECTIV	: Tutor		Lr : Sup		Learning	g P:Pr	oject R	: Resear	rch C: C	redits	1 1	I		
	eory/La						·							
•	ES:													
	To i	mplem	ent vario	ous laws	of Boo	lean alg	ebra in S	SOP and	POS fo	rms.				
•	To i	mplem	ent com	oination	al logic	and seq	uential l	ogic cir	cuits.					
•	To u	ise stan	dard IC	's in imp	lement	ing digit	al circu	its.						
COURSE O	UTCO	MES (COs):(3- 5)										
The students	will be	able to												
CO1	Practio	cally in	nplemen	t of vari	ous law	s of Boo	olean al	gebra in	SOP an	d POS f	orms.			
CO2		-	arious combinational logic circuits and code converters.											
CO3			mplement different types of multiplexers and demultiplexers.											
CO4			l implement various sequential circuits like flip-flops, counters and registers.											
CO5	_		standard IC's in implementing combinational and sequential logic circuits.											
Mapping of	Ŭ				•				sequent	10810				
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		3	3	3	3	2	-	-	-	-	2	3	2	
CO2		3	3	3	3	3	-	-	-	-	2	3	2	
CO3		3	3	3	3	3	-	-	-	-	2	2	2)
CO4		2	2	3	3	3	-	-	-	-	2	2	1	-
CO5		2	2	3	2	3	-	-	-	-	2	2	1	
COs / PS	Os		PSO1	·		PSO2	2		PSO:	3		PS	04	
CO1			3			3			2			2	2	
CO2			3			3			2			2		
<u>CO3</u>			3			3			3			2		
CO4			3			3			3			2		
CO5	04	41 4	2	_4)) II:-L	3 2 M-	J! 1	T	2			1		
3/2/1 indicate	es Strei	ngtn oi	f Correlation 3- High, 2- Medium, 1-Low											
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences Program Core Program Electives Open Electives Practical / Project Internships / Technical Skill								Soft Skills		

BEC18L02	DIGITAL SYSTEM DESIGN LAB	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. IMPLEMENTATION OF BOOLEAN FUNCTIONS USING LOGIC GATES -POS & SOP FORM.
- 2. IMPLEMENTATION OF MULTIBIT ADDERS & SUBTRACTORS (2 & 3 BITS).
- 3. DESIGN AND IMPLEMENTATION OF CODE CONVERTERS USING LOGIC GATES
- i) BCD TO EXCESS-3 CODE AND VICE VERSA
- ii) BINARY TO GRAY AND VICE-VERSA
- 4. DESIGN AND IMPLEMENTATION OF MAGNITUDE COMPARATOR (2-BIT).
- 5. MULTIPLEXER & DE MULTIPLEXER LOGIC CIRCUIT DESIGN
- 6. DESIGN AND IMPLEMENTATION OF FLIP FLOPS
- 7 .IMPLEMENTATION OF STUDY OF REGISTERS
- 8. CONSTRUCTION AND VERIFICATION OF COUNTERS.
- 9. IMPLEMENTATION OF COMBINATIONAL LOGIC FUNCTIONS USING STANDARD ICS
- 10. IMPLEMENTATION OF SEQUENTIAL LOGIC FUNCTIONS USING STANDARD ICS

References:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Total no. of hours: 45

Subject Code: BHS20ET5	Subject Name: Universal Human Values 2: Understanding Harmony	T/L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	ETL	1	0/1	3/0	3

L:LectureT:Tutorial SLr: Supervised Learning P:Project R:ResearchC:CreditsT/L/ETL:

Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

Human Values Courses: During the Induction Program, students would get an initial exposure to human values through Universal Human Values - I. This exposure is to be augmented by this compulsory full semester foundation course.

- 1. Development of a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being family society and

	nding (or	developing	g clarity) of th	e harn	nony in	the	hur	man be	ing, fan	nily, so	ciety and	l
nature/exist													
· ·	ning of sel												
_	nent of cor			age to a	ct.								
COURSEO		, , ,	3–5)										
The students									_				
CO1	Relate sel	f and surro	oundings	and ide	entify re	esponsib	oility	in li	ife				
CO2	Associate	human rel	ationshi	p and na	ature to	handle	prob	lem	s and pr	ovide su	ıstainabl	e solutio	ns
CO3	Develop o	ritical abil	ity and e	engage i	n reflec	tive and	d ind	eper	ndent Th	ninking			
CO4	Show con	Show commitment towards understanding of values											
CO5	Apply Hu	man value	s in day	to day s	etting i	n real li	fe						
Mapping of	Course O	utcomes v	vith Pro	gram O	utcom	es(POs))						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P	07	PO8	PO9	PO10	PO11	PO12
CO1	-	1 1 - 2 1 - 1 1 -											2
CO2	-	-	2	2	1	2	3	3 1 - 2				-	2
CO3	-	-	1	1	1	2	-		-	1	2	-	3
CO4	-	-	2	-	1	1	1	-	3	1	1	-	3
CO5	-	-	1	-	-	2	1		2	1	1	-	3
COs/PS			PSO1			PSO2				PSO3		PS	04
CO			-			-				1		-	
CO	2		-			-				1		-	
CO	3		-			-				1		-	
CO	4		-			-				1		-	•
CO	5		-			-				1		-	
3/2/1indicate	esstrength	rengthofcorrelation3 -High,2-Medium,1- Low											
Category	Basic Sciences	Engg Sciences	H	& Social Sciences	Program Program Electives Open Electives Practical /Project						Soft Skills		
				✓									

BHS20ET5 Universal Human Values 2: Understanding Harmony 1 0/1 3/0 3

Unit 1: Introduction - Need, Basic Guidelines, Content and Process for Value Education

6Hrs

Purpose and motivation for the course, recapitulation from Universal Human Values-I. - Self-Exploration—what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration. - Continuous Happiness and Prosperity- A look at basic Human Aspirations - Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority.-Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels. Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

Unit 2: Understanding Harmony in the Human Being - Harmony in Myself!

6Hrs

Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. - Understanding the needs of Self ('I') and 'Body' - happiness and physical facility.- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). - Understanding the characteristics and activities of 'I' and harmony in 'I'. - Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail. - Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available tome. Identifying from one's own life.

Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Unit 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

6Hrs

Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship - Understanding the meaning of Trust; Difference between intention and competence - Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship - Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals - Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

Unit 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence 6Hrs

Understanding the harmony in the Nature - Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature. - Understanding Existence as Co-existence of mutually interacting units in all-pervasive space. - Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Unit 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics 6Hrs

Natural acceptance of human values - Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order

Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above

B.Tech ECE 2018 Regulation(Revised)

production systems. -

Case studies of typical holistic technologies, management models and production systems - Strategy for transition from the present state to Universal Human Order: (a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers, (b) At the level of society: as mutually enriching institutions and organizations

Sum up. Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. To discuss the conduct as an engineer or scientist etc.

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Total no. of hours: 30

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj Pandit Sunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

Subject Code: BCS18IL1	Subject Name : C PROGRAMMING WITH LINUX LAB	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: C Programming and lab	Lb	0	0/0	3/0	1
L: Lecture T: Tu	torial SLr: Supervised Learning P: Project R: Research	C: Credit	S			

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To make student learn a programming language.
- To learn problem solving techniques.
- To learn basic understanding of LINUX commands & file systems to familiarize students with LINUX environment.
- To make student learn fundamentals of shell scripting and shell programming.

COURSE OUTCOMES (COs): (3-5)

The Students will be able to

CO1	Develop conditional and iterative statements to execute basic c program.
CO2	Formulate C program that uses pointers to access arrays and structure
CO3	Construct C programs using built-in and user defined functions to solve problems.
CO4	Evaluate basic shell scripts on Linux operating system
CO5	Design generic application menu and handle Linux system calls.

Mapping of Course Outcomes with Program Outcomes (POs)

						()					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	2	1	-	-	-	-	-	2
CO2	2	3	2	3	2	2	-	-	-	-	-	2
CO3	3	3	3	3	2	2	-	-	-	-	ı	2
CO4	3	2	2	_	2	-	-	-	-	-	-	2
CO5	2	2	2	2	2	1	-	-	-	-	-	2
COs / PSOs		PSO1	_		PSC)2		PSC	D3		PSO4	
001		1						2			2	

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	1	-	3	2
CO2	2	-	3	3
CO3	2	-	3	3
CO4	1	-	3	2
CO5	1	-	3	2
0/0/4 1 71	G: 17 0.0 7 14	0 TTI 1 0 3 5 11 4	_	

3/2/1 indicates Strength of Correlation 3- High,2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
							✓		

BCS18IL1	C PROGRAMMING WITH LINUX LAB	0	0/0	3/0	1	

LIST OF EXPERIMENTS

- 1. PRIME TEST.
- 2. PALINDROME TEST.
- 3. FIBONACCI SERIES GENERATION.
- 4. ARMSTRONG NO TEST.
- 5. SOLVING QUADRATIC EQUATION.
- 6. USAGE OF CASE STRUCTURES.
- 7. MATRIX MULTIPLICATION.
- 8. RECURSION PROGRAM
- 9. SIMPLE SHELL PROGRAMMING.
- 10. MENU DRIVEN SHELL SCRIPT SORT WITH VARIOUS OPTIONS.

References:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Total no. of hours: 45

$\underline{SEMESTER-IV}$

Subject Code:	Subject PROCE	Name:	PROB	ABILIT	Y AND	RANDO	OM		T/L/ET	L L	T/SL	r P/	R C
BMA180 07		site: Math	nematics	s – I, Ma	themati	cs - II	II Ty 3 1/0 0/0						
L : Lecture						: Project	R : Res	earch C	: Credits				
T/L/ETL:		ab/Embed	ided In	eory and	Lab								
OBJECTI • To		nd the bas	ic conce	epts in pr	obability	y and ran	dom pro	cess and	d its applica	ation ii	n signal	proce	ssing.
COURSE The studen			s):(3- 5))									
CO1	Understand the Basic concepts in Probability												
CO2	Understand the Basic concepts in Probability Understand the Basic concepts in Distribution												
CO3	Understand the Basic concepts in Random process												
CO4	Understand the Basic concepts in Correlation												
CO5	Understand the Basic concepts in Spectral Density												
Mapping o	of Course	Outcome	es with	Progran	n Outco	mes (PO	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 PO9	PO)10 H	PO11	PO12
CO1	3	3	2	2	1	-	-	_					1
CO2	3	3	2	2	1	_	-				-	-	1
CO3	3	3	2	2	1	-	-	-	-		-	-	1
CO4	3	3	2	2	1	-	-	-	-		-	-	1
CO5	3	3	2	2	1	-	-	-	-		-	-	1
COs / PS	Os	PSO1			PSO2			PSO3			PS	SO4	
CO1		3			-			3				1	
CO2		3			-			3				_	
CO3		3			_			3				1	
CO4		3			_			3					
CO5		3			-			3				1	
3/2/1 indic	ates Strei	ngth of C	orrelat	ion 3-1	High, 2-	Mediur	n,1-Low		<u> </u>				
Category	Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program	Core			Electives Practical /	Project	Internships / Technical	Skill	Soft Skills
	√												

BMA18007 PROBABILITY AND RANDOM PROCESS	3	1/0	0/0	4	l
---	---	-----	-----	---	---

UNIT I RANDOM VARIABLES

12 Hrs

Baye's Theorem – Applications - Random Variables – Distribution functions – Moments – Moment Generating functions – Chebychev's Inequality (statement and application only) – Function of Random Variables.

UNIT II STANDARD DISTRIBUTIONS

12 Hrs

Marginal and Conditional Distributions – Applications of Discrete Distributions: Binomial – Poisson – Geometric – Applications of Continuous distributions: Uniform – Exponential– Normal distributions – Central Limit theorem (statement applications only).

UNIT III RANDOM PROCESS

12 Hrs

Stationary Process – Ergodic Process – Poisson Process – Applications: Birth and Death Process – Markov Process – Markov Chains.

UNIT IV CORRELATION

12 Hrs

Auto Correlation – Auto Covariance – Cross Correlation – Cross Covariance.

UNIT V LINEAR SYSTEMS-APPLICATIONS

12 Hrs

Spectral Density - Cross Spectral Density - Applications to Linear Systems with Random Inputs and Outputs.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 60

Text Books:

- 1) Veerarajan T., "Probability, Statistics and, Random Processes", Tata McGraw Hill Publishing Co., (2008).
- 2) Gupta S.C., Kapoor V.K., "Fundamentals of Mathematical Statistics", S. Chand& Co., (2007).

References:

- 1. Singaravelu, "Probability and Random Processes", Meenakshi Agency, (2017).
- 2. Richard Johnson A., "Miller & Freund's Probability and statistics for Engineers" (9th ed), Prentice Hall of India, (2016).

Subject Coo BEC18005	de:	Subject I ELECTI		ONTRO	L SYS	STEMS	FOR		T / L/ ETL	L	Т	/SLr	P/R	С
		Prerequis	ite: Mathe	ematics 1	& III				Ty	3		1/0	0/0	4
L: Lecture T	`: Tuto	orial SLr	: Supervi	sed Lear	ning P	: Project	R : Re	search C	C: Cred	its	·			
T/L/ETL: T	heory/l	Lab/Embe	dded Theo	ory and l	Lab									
OBJECTIV	ES:													
		rn the basi												
		derstand th												
		rn the freq eck the sta							lar plo	t.				
		dy differei							ents iis	ino stat	e var	iahles		
COURSE C					ila aavai	nee cont	ioi syste	iii conce	pts us.	ing stat	.c var	idoles.		
The student			02)(()	-,										
CO1		odel physic	cal system	ns using	block di	agram a	nd signa	ıl flow g	raph.					
CO2		alyze the												
CO3	Per	rform anal	ysis on m	argin fo	stabilit	y of the	control	systems						
CO4	Ex	plain the r	ature of s	tability 1	for the g	iven sys	tem usir	ng Chara	cterist	ics equ	ations	S.		
CO5		sign compriable anal			the rec	quired d	ynamic	response	of the	e syste	m and	d under	stand t	he stat
Mapping of	Cour	se Outcon	nes with l	Progran	1 Outco	mes (PC	Os)							
COs/POs	PO	D1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	1	PO12
CO1		3 3	3	2	2	1	-	-	-	-		-		2
CO2		3 3	3	3	3	1	-	-	-			-		2
CO3		3 3	3	3	3	1	-	-	-	-		-		2
<u>CO4</u>		3 3	3	3	3	1	-	-	-	-		-		2
COs / PSOs		3 3 PSO	3	3	3 PSO 2	1	-	PSC	-			- DC	5 04	2
COS/PSOS	8	3	1		3	<u> </u>		2	13			Po		
CO2		3			3			1					1 2	
CO3		3			2			2					2 1	
CO4		3			2			1					2	
CO5		3			3			1					- 1	
3/2/1 indica	tes Str	ength of	Correlati	on 3-1	High,2-	Mediun	n, 1-Lov	V						
	S		pt	ses	4)			SS				/ II;		
	nce	ಕ್ಷ	S	ienc	Ore			tive				ips Sk		
ory	Scie	erii	itie	Sc		ء	es			a] /	,	nsk ica	- ills	
Category	ic 5	ine ine		ial	graı		ctiv	- Ju		ctic ject		Internships / Technical Skill	t Sk	
Ca	Basic Sciences	Engineering	Humanities and	Social Sciences	Program Core	Program	Electives	Open Electives		Practical Project		Γ	Soft Skills	
								 						
			ı						1		1			

BEC18005 CONTROL SYSTEMS FOR ELECTRONICS 3 1/0 0/0 4

UNIT I SYSTEM REPRESENTATION

12 Hrs

Control Systems – Basic elements in control systems – Open and Closed loop systems – Mathematical models of physical systems – Transfer function – Block diagram reduction techniques – Signal flow graph.

UNIT II TIME RESPONSE

12 Hrs

Standard Test Signals-Time Domain study of first order and second order feedback control systems -Time domain Specifications - I and II order System Response - Error Coefficients - Generalized Error Series - Steady State Error - P, PI, PID Controllers.

UNIT III FREQUENCY RESPONSE

12 Hrs

Frequency Response - Bode plot - Polar plot - Constant M and N circles - Determination of Closed Loop Response from Open Loop Response - Correlation between Frequency Domain and Time Domain Specifications.

UNIT IV STABILITY OF CONTROL SYSTEM

12 Hrs

Characteristics Equation - Location of Roots in S plane for stability - Routh Hurwitz Criterion - Root Locus Construction - Effect of Pole, Zero Addition - Gain Margin and Phase Margin - Nyquist Stability Criterion.

UNIT V COMPENSATORS AND STATE SPACE ANALYSIS

12 Hrs

Lag, Lead and Lag-Lead Compensators- State Space Analysis - State Space Formulation -State Variables - Phase variables and Canonical Variables - Concept of Controllability & Observability.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 60

Textbooks:

- 1. K. Ogata, "Modern Control Engineering", 4th edition, Pearson Education, New Delhi, 2003 / PHI.
- 2. I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.
- 3. B.C. Kuo, "Automatic Control Systems", Prentice Hall of India Ltd., New Delhi, 7th Edition, 1995.

References:

- 1. M. Gopal, "Control Systems, Principles & Design", Tata McGraw Hill, New Delhi, 2002.
- 2. M.N. Bandyopadhyay, "Control Engineering Theory and Practice", Prentice Hall of India, 2003.
- 3. A. Nagoorkani, "Control System Engineering" RBA Publications.
- 4. Stefani, Shanian, Savant, Hostetter, "Design of Feedback Control Systems", 4thEdition, Oxford university press 2002.

Subject Code BEC18006	e: Su	bject Na		T / L/ ETL	L	T/S	Lr	P/R	C					
	Pre	requisite		Ту	3	C)/0	0/0	3					
L : Lecture T T/L/ETL : Th						: Project	R : Re	search C:	Credits					
OBJECTIVI														
	on comple	etion of t	his cour	se the st	udent wi	ill unders	tand							
	he consti													
• [Design of	amplifie	r circuit	S										
	Vorking o													
	Constructi													
	Design of													
COURSE O			s):(3-	5)										
The Students				0										
CO1		ss variou				1	1 1	1 41						
CO2						ed gain in								
CO3								sired freq	luency.					
CO4 CO5						rator circ		1: 4:						
Mapping of					_			lications.	•					
COs/POs	PO1	PO2	PO3	PO4	PO5	DO(DO=	DOO			10	DO11		
COS/1 OS	101	102	103	1 1 04			D(17		D(10			<i>VI</i> 111		1117
					103	PO6	PO7	PO8	PO9	PO	010	PO11	P	012
CO1	3	3	3	3	2	2	PO7 -	PO8	PO9 -	PO		PO11	P	012 1
CO1	3	3	3	3 3	2 2	2 2						- -	Po	
CO2 CO3	3	3	3	3 3 3	2 2 2	2 2 2	-	-	-	_		-	P	1
CO2 CO3 CO4	3 3 3	3 3 3	3 3 3	3 3 3 3	2 2 2 2	2 2 2 2	-	-	-	_		-	Po	1
CO2 CO3 CO4 CO5	3 3 3 3	3 3 3 3	3 3 3	3 3 3	2 2 2 2 2 2	2 2 2 2 2 2	- - -	- - - -	- - - -	-		- - - -		1 1 1
CO2 CO3 CO4 CO5 COs/PSOs	3 3 3 3	3 3 3 PSO1	3 3 3	3 3 3 3	2 2 2 2 2 PSC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - -	- - - -	- - -	-		- - - -		1 1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1	3 3 3 3	3 3 3 PSO1 3	3 3 3	3 3 3 3	2 2 2 2 2 PSC 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - -	- - - -	- - - -	-		- - - - - PSG	04	1 1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2	3 3 3 3	3 3 3 3 PSO1 3	3 3 3	3 3 3 3	2 2 2 2 2 PSO 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - -	- - - - - PS	- - - - - 03	-		- - - - - PSO	D4	1 1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3	3 3 3 3	3 3 3 9SO1 3 3 3	3 3 3	3 3 3 3	2 2 2 2 2 2 PSC 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - -	PS	- - - - - 03 1 1	-		- - - - - PSO 1 1	D4	1 1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3	3 3 3 3	3 3 3 9SO1 3 3 3 3	3 3 3	3 3 3 3	2 2 2 2 2 2 PSC 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - -	PS	- - - - O3 1 1 1 1 2	-		- - - - - PSC 1 1 1	D4	1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	3 3 3 3	3 3 3 3 PSO1 3 3 3 3	3 3 3 3	3 3 3 3 3	2 2 2 2 2 PSC 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - - -	PS	- - - - - 03 1 1	-		- - - - - PSO 1 1	D4	1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	3 3 3 3	3 3 3 3 PSO1 3 3 3 3	3 3 3 3	3 3 3 3 3	2 2 2 2 2 PSC 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - - -	PS	- - - - O3 1 1 1 1 2	-		- - - - - PSC 1 1 1	D4	1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 H/M/L indic	3 3 3 3	3 3 3 9801 3 3 3 3 3 ngth of (3 3 3 3	3 3 3 3 3	2 2 2 2 2 PSC 3 3 3 3 3 - High, 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- - - -	PS	- - - - O3 1 1 1 1 2	-		- - - - PS(1 1 1 1	D4	1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 H/M/L indic	3 3 3 3	3 3 3 9801 3 3 3 3 3 ngth of (3 3 3 3	3 3 3 3 3	2 2 2 2 2 PSC 3 3 3 3 3 - High, 2	2 2 2 2 2 2 2 2 2 2 2 2	- - - - 	PS	- - - - O3 1 1 1 1 2	-		- - - - - PS(1 1 1 1 1	D4	1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 H/M/L indic	3 3 3 3	3 3 3 9801 3 3 3 3 3 ngth of (3 3 3 3	3 3 3 3 3	2 2 2 2 2 PSC 3 3 3 3 3 - High, 2	2 2 2 2 2 2 2 2 2 2	- - - - 	PS	- - - - 03 1 1 1 2 1	-		- - - - - PS(1 1 1 1 1	D4	1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 H/M/L indic	3 3 3 3	3 3 3 9801 3 3 3 3 3 ngth of (3 3 3 3	3 3 3 3 3	2 2 2 2 2 PSC 3 3 3 3 3 - High, 2	2 2 2 2 2 2 2 2 2 2	- - - - 	PS	- - - - 03 1 1 1 2 1	-		- - - - - PS(1 1 1 1 1	D4	1 1 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 H/M/L indic	3 3 3 3	3 3 3 3 PSO1 3 3 3 3	3 3 3 3	3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 PSC 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2	- - - -	PS	- - - - 03 1 1 1 2 1	-		- - - - PSO 1 1 1 1	D4	1 1 1

BEC18006 ELECTRONIC CIRCUITS	3	0/0	0/0	3	
------------------------------	---	-----	-----	---	--

UNIT I RECTIFIER & POWER SUPPLY

9 Hrs

Half & Full Wave Rectifies – Filters – Shunt, Inductor, LC Section & Ripple Factor, π filters, Calculation for C, L and LC Filters – Voltage Regulators – Zener – Series Voltage Regulator – Shunt Voltage Regulator – SMPS- IC Voltage Regulators.

UNIT II AMPLIFIERS

9 Hrs

Amplifiers – Frequency Response of RC Coupled Amplifiers – Frequency Response of Emitter follower, Gain Band Width Product – FET - Amplifier at Low and High Frequency Cascaded Amplifiers

UNIT III FEED BACK AMPLIFIER & OSCILLATORS

9 Hrs

Four Basic Type of Feedback – Effect of Feedback on Amplifier Performance-Examples of Different types of Feedback Amplifiers-Voltage Series & Shunt Feedback, Current Series & Shunt Feedback – Condition for Oscillation Barkhaushen Criteria – LC Oscillators – Hartley & Colpitts – RC Oscillators – Wein Bridge, RC Phase Shift, Crystal Oscillator.

UNIT IV MULTIVIBRATORS

9 Hrs

Collector Coupled & Emitter Coupled Astable Multivibrator, – Mono Stable, Bistable Multivibrator–Triggering Methods – Storage Delay and Calculation of Switching Time - Schmitt Trigger Circuits, Speed up Capacitor in Switching – UJT based Relaxation Oscillator.

UNIT V POWER AMPLIFIER

9 Hrs

Classification – Class A, B, C & AB, Class B-push pull – Class B Complementary Symmetry, Class S, and Power sections Classifications, Efficiency, Distortion in Amplifiers-Tuned Amplifiers.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Mohammed. H. Rashid, "Micro Electronic Circuits, Analysis and Design", Thomson Learning
- 2. David. A. Bell, "Solid state Pulse Circuits", Prentice Hall India, 4th Edition, 2000.
- 3. Angsumansarkar, "Solid State Microelectronic and Optoelectronic Devices", University press,2012.

- 1. MillmanTaub, "H Pulse Digital & Switching waveform", Tata McGraw Hill International, 2001
- 2. Jacob Millman, Cristas C. Halkias," Integrated Electronics", Tata McGraw Hill., Edition 1991.

			OMMU	NICAT	ION T	HEORY]	ETL	L	T/SLr	P/R	С	
Pre	erequisite	e: None						Гу	3	0/0	0/0	3	
					: Proje	ct R:F	Research	C: Cred	dits				
ory/Lab/	Embedd	ed Theo	ry and l	Lab									
10 stu	dy some	basic iii	погшан	on theor	ry with	some ci	iannei co	oung in	eorem.	•			
JTCOM	ES (COs	s):(3-	5)										
will be ab	ole to												
Identi	fy the ty	pes of N	Noise an	d expres	ss the ne	eed for	modulati	on.					
Illusti	ate the c	oncepts	of amp	litude m	odulati	on and i	ts transr	nission	technic	que.			
Artic	ılate the	generat	ion & d	emodula	ation of	FM sys	tems.						
Analy	ze the a	nalog to	digital	convers	ion met	hods.							
Imple	ment the	coding	technic	ues and	calcula	te the c	hannel c	apacity					
Course O	utcomes	s with F	Progran	n Outco	mes (P	Os)							
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 P	O12	
2	1	-	-	1	-	1	_	-	-	1		3	
3	1	2	2	3	1	-	-	-	-	-		2	
3	1	-	3	2	1	-	-	-	-	-		2	
					-	-	-	-	-	1		3	
3	_		2	_	-	-	-	-	<u> </u>		~	2	
		-		PSC)2		PS	503		P			
				-				-					
								2					
								<u>Z</u>					
			2										
s Streng	th of Co	rrelatio	on 3-1		Mediu	m. 1-L	ow						
				<i>8</i> - , -		, - =							
					es			5		_			
	Engineering Sciences	Humanities and	Social Sciences	Program Core	Program Electives		Open Electives	Practical / Project		Internships / Technical Skill	Soft Skills		
	Pre: Tutorial cory/Lab/ ES: To stu To pro To stu UTCOM will be ab Identi Illustr Articu Analy Imple Course O PO1 2 3 3 3 3	Prerequisite : Tutorial SLr: cory/Lab/Embedd ES: To study various To provide som To study some UTCOMES (COswill be able to Identify the ty Illustrate the company of the study some Articulate the Analyze the and Implement the Course Outcomes PO1 PO2 2 1 3 1 3 1 3 2 3 3 PSO1 3 2 3 2 3 2	Prerequisite: None : Tutorial SLr : Supervice Prory/Lab/Embedded Theo ES: To study various Amp To provide some depth To study some basic in UTCOMES (COs) : (3-will be able to Identify the types of N Illustrate the concepts Articulate the generat Analyze the analog to Implement the coding Course Outcomes with F PO1 PO2 PO3 2 1 - 3 1 2 3 1 - 3 2 3 3 3 3 3 PSO1 3 2 3 2 3 3 4 2 3 4 7 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	Prerequisite: None : Tutorial SLr : Supervised Least cory/Lab/Embedded Theory and Best Cory/Lab/Embedded Th	Prerequisite: None : Tutorial SLr : Supervised Learning Procy/Lab/Embedded Theory and Lab ES: To study various Amplitude modulation To provide some depth analysis in noin To study some basic information theory TCOMES (COs) : (3-5)	Prerequisite: None Tutorial SLr : Supervised Learning P : Projectory/Lab/Embedded Theory and Lab ES: To study various Amplitude modulation and of To provide some depth analysis in noise performation theory with sufficient to study some basic information and sufficient to study some basic information and sufficient to study some basic information theory with sufficient to sufficient to suffi	Prerequisite: None : Tutorial SLr : Supervised Learning P : Project R : Fory/Lab/Embedded Theory and Lab ES: To study various Amplitude modulation and demodul To provide some depth analysis in noise performance To study some basic information theory with some characteristics (COs): (3-5) will be able to Identify the types of Noise and express the need for a study some basic information theory with some characteristics (COs): (3-5) will be able to Illustrate the concepts of amplitude modulation and it articulate the generation & demodulation of FM system Analyze the analog to digital conversion methods. Implement the coding techniques and calculate the complete Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 2 1 - 1 - 1 - 1 3 1 2 2 3 1 - 1 3 1 2 2 3 1 - 1 3 2 3 2 3 - 1 PSO1 PSO2 3 - 2 3 3 2 3 - 1 PSO1 PSO2 3 3 2 3 2 3 3 2 3 - 1 PSO1 PSO2 3 3 2 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 3	Prerequisite: None Tutorial SLr: Supervised Learning P: Project R: Research cory/Lab/Embedded Theory and Lab ES: To study various Amplitude modulation and demodulation syntoprovide some depth analysis in noise performance of varion To study some basic information theory with some channel control of the	Prerequisite: None Tutorial SLr: Supervised Learning P: Project R: Research C: Cree cory/Lab/Embedded Theory and Lab ES: To study various Amplitude modulation and demodulation systems. To provide some depth analysis in noise performance of various rece To study some basic information theory with some channel coding the UTCOMES (COs): (3-5) will be able to Identify the types of Noise and express the need for modulation. Illustrate the concepts of amplitude modulation and its transmission Articulate the generation & demodulation of FM systems. Analyze the analog to digital conversion methods. Implement the coding techniques and calculate the channel capacity. Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 2 1 1 1	Prerequisite: None Tutorial SLr: Supervised Learning P: Project R: Research C: Credits Sory/Lab/Embedded Theory and Lab SS: To study various Amplitude modulation and demodulation systems. To provide some depth analysis in noise performance of various receiver. To study some basic information theory with some channel coding theorem. TCOMES (COs): (3-5) will be able to Identify the types of Noise and express the need for modulation. Illustrate the concepts of amplitude modulation and its transmission technic Articulate the generation & demodulation of FM systems. Analyze the analog to digital conversion methods. Implement the coding techniques and calculate the channel capacity. Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 2 1 1	Prerequisite: None	Prerequisite: None	

BEC18007	COMMUNICATION THEORY	3	0/0	0/0	3

UNIT I INTRODUCTION TO COMMUNICATION SYSTEMS AND NOISE 9 Hrs

Basic Communication Systems – Need for Modulation in Communication Systems - Noise - Sources of Noise – Types of Noise - External Noise – Thermal Agitation – Shot Noise – Noise Figure – Signal to Noise Ratio – Equivalent Noise Resistance, Amplitude Modulation and demodulation- Frequency Spectrum – power relations in Amplitude Modulation.

UNIT II CONTINUOUSMODULATION SYSTEMS

9 Hrs

Balanced Modulator, DSB - SC, SSB and VSB - Modulation and Demodulation - AM Transmitter, Receiver- Types, AM receivers.

UNIT III ANGLE MODULATION

9 Hrs

Frequency modulation – Mathematical representation of FM – Frequency Spectrum – Phase Modulation – Noise triangle – Pre-emphasis, de- emphasis- Comparison of Wide band and Narrow band FM, AFC - Stereophonic FM multiplex system – Generation of FM - FM receivers - Communication receivers.

UNIT IV ANALOG TO DIGITAL CONVERSION

9 Hrs

Sampling Theorem - PAM- Quantization of signal - Quantization Error – PWM , PPM – Introduction to digital modulation systems – ASK, FSK, PSK – Transmitter and receiver.

UNIT V INFORMATION THEORY AND CODING

9 Hrs

Introduction –Information - Entropy - Information rate, Classification of codes, Kraft McMillan inequality –-Source coding theorem - Shannon , Fano coding - Huffman coding, Joint and conditional entropies–Channel capacity -Shannon limit - BSC -Discrete memory less channels - Mutual information.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Roy Blake, "Electronic Communication Systems", Thomson Learning 2nd Edition, 2002.
- 2. George Kennedy: "Electronic Communication Systems", Tata McGraw Hill publications, 1992.
- 3. R Bose, "Information theory, Coding and Cryptography", TMH 2007.

- 1.K.C. Raveendranath, "Communication system modeling and simulation using matlab & Simulink" universities press, 2011.
- 2. Taub & Schilling," Principles of Communication", Tata McGraw Hill, 1986
- 3. Simon Haykins, "Principles of Communications", Prentice Hall of India. 2001

Subject Code:	Subject Name: THE INDIAN CONSTITUTION	T / L/	L	T/SLr	P/R	С
BHS18NC1		ETL				
	Prerequisite: None	Ty		0.40	0./0	NG
			2	0/0	0/0	NC

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To provide an overview of the history of the making of Indian Constitution
- To understand the preamble and the basic structures of the Constitution.
- To Know the fundamental rights, duties and the directive principles of state policy
- To understand the functionality of the legislature, the executive and the judiciary

COURSE OUTCOMES (COs): (3-5)

The students will be able to

CO1	To provide an overview of the history of the making of Indian Constitution

CO2 To understand the preamble and the basic structures of the Constitution

CO3 To Know the fundamental rights, duties and the directive principles of state policy

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	-	-	-	2	3	3	3	2	2	3	
CO2	-	-	-	-	-	2	3	3	3	2	2	3	
CO3	-	-	-	-	-	2	3	3	3	2	2	3	
COs / PSOs		PSO1	L		PSO2	2		PS	03		PSO4		
CO1		1			-			-				3	
CO2		1			-			-			3		
CO3	1				-		-				3		

3/2/1 indicates Strength of Correlation 3- High, 2- Medium,1-Low

Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
			✓						

BHS18NC1	THE INDIAN CONSTITUTION	2	0/0	0/0	NC
UNIT 1					6 Hrs
THE HISTORYOFTHE BASICSTRUCTURES	MAKINGOF INDIANCONSTITUTION, PREAM	MBLE AN	DTHE		
UNIT 2					6 Hrs
FUNDAMENTALRIGH	ITSAND DUTIES , DIRECTIVE PRINCIPLESO	F STATE	POLICY		
UNIT 3					6 Hrs
LEGISLATURE, EXEC	CUTIVE AND JUDICIARY				
UNIT 4					6 Hrs
EMERGENCY POWER	RS				
UNIT 5					6 Hrs
SPECIAL PROVISIONS AMENDMENTS	S FOR JAMMU AND KASHMIR, NAGALAND	AND OT	HER REC	GIONS,	

TEXT BOOKS:

1. D D Basu, Introduction to the Constitution of India, 20th Edn., Lexis Nexis Butterworths, 2012. **REFERENCE BOOKS:**

- 1. Rajeev Bhargava(ed), Ethics and Politics of the Indian Constitution, Oxford University Press, New Delhi, 2008.
- 2. Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford University Press, Oxford, 1966.
- 3. Zoya Hassan, E. Sridharan and R. Sudarshan (eds), India's Living Constitution: Ideas,
- 4. Practices, Controversies, Permanent Black, New Delhi, 2002.
- 5. Subhash C. Kashyap, Our Constitution, National Book Trust, New Delhi, 2011.

Total no. of hours: 30

Subject Code: BHS18NC2	Subject Name: THE INDIAN TRADITIONAL KNOWLEDGE	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	Ту	2	0/0	0/0	NC

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ T/L/ETL: \ Theory/Lab/Embedded \ Theory \ and \ Lab$

OBJECTIVES:

- To understand the Pre-colonial and Colonial Period, Indian Traditional Knowledge System
- To understand the Traditional Medicine, Traditional Production and Construction Technology
- To Know the History of Physics and Chemistry, Traditional Art and Architecture and Vastu Shashtra, Astronomy and Astrology
- To understand the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India

COURSE OUTCOMES (COs): (3-5)

The students will be able to

- **CO1** To understand the Pre- colonial and Colonial Period, Indian Traditional Knowledge System
- CO2 To understand the Traditional Medicine, Traditional Production and Construction Technology
- CO3 To understand the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	_	1	-	-	-	2	3	3	3	2	2	3	
CO2	-	-	-	-	-	2	3	3	3	2	2	3	
CO3	-	ı	ı	-	-	2	3	3	3	2	2	3	
COs / PSOs		PSO1		PSO2				PSO3			PSO4		
CO1		1			-				-		3		

3/2/1 indicates Strength of Correlation 3- High, 2- Medium,1-Low

Category	Basic Sciences	Engg Sciences	Humanities &Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
			✓						

BHS18NC2 THE INDIAN TRADITIONAL KNOWLEDGE 2 0/0 0/0 NC

UNIT I 6 Hrs

HISTORICAL BACKGROUND: TKS DURING THE PRE- COLONIAL AND COLONIAL PERIOD, INDIAN TRADITIONAL KNOWLEDGE SYSTEM

UNIT II 6 Hrs

TRADITIONAL MEDICINE, TRADITIONAL PRODUCTION AND CONSTRUCTION TECHNOLOGY

UNIT III 6 Hrs

HISTORY OF PHYSICS AND CHEMISTRY, TRADITIONAL ART AND ARCHITECTURE AND VASTUSHASHTRA, ASTRONOMY AND ASTROLOGY

UNIT IV 6 Hrs

ORIGIN OF MATHEMATICS, AVIATION TECHNOLOGY IN ANCIENT INDIA, CRAFTS AND TRADE IN ANCIENT INDIA

UNIT V 6 Hrs

TKS AND THE CONTEMPORARY WORLD, TKS AND THE INDIAN UNION, TKS AND IT REVOLUTION.

Total no. of hours: 30

TEXT BOOKS:

- Amit Jha (2009) , Traditional knowledge system in India, 1st Edition, Delhi University (North Campus)
- 2. Dr. A. K. Ghosh (2011), Traditional Knowledge of Household Products

Subject Code:	Subject Name: ELECTRICAL MACHINES AND PCB DESIGN	T / L/ ETL	L	T/SLr	P/R	С
BEC18ET1	Prerequisite: Basic Electrical and Electronic	ETL	1	0/1	3/0	3
	Engineering					

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

To study the working principles of different types of AC machines.

- To understand and analyze the working of various special machines.
- To give an introduction to different types of electronic components and instruments.
- To give an understanding of different stages in PCB design process.
- To analyze how components are assembled and tested in PCB.

COURSE OUTCOMES (COs): (3-5)

The students will be able to

CO1	Analyze the principle and working of different types of AC machines.
CO2	Interpret the working and applications of various special machines
CO3	Identify the need for different types of electronic components and instruments.
CO4	Formulate the process of designing PCB layout
CO5	Assemble and test different components in PCB's

Mapping of Course Outcomes with Program Outcomes (POs)

				- 0			/					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	1	ı	-	-	-	-	2
CO2	3	2	2	2	2	1	1	-	-	_	-	2
CO3	3	2	2	2	2	1	ı	_	-	-	-	2
CO4	2	2	2	3	2	2	-	-	-	-	-	2
CO5	2	2	2	2	2	_	-	_	-	-	_	2

	- - -	- -		_
COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	1
CO2	3	3	2	1
CO3	3	2	2	1
CO4	3	3	2	2
CO5	3	2	2	2

3/2/1 indicates Strength of Correlation 3- High,2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
				✓					

BEC18ET1 ELECTRICAL MACHINES AND PCB DESIGN 1 0/1 3/0 3

UNIT I AC MACHINES

9 Hrs

Transformers - Principle of Operation of single-phase Transformer - EMF Equation- Auto Transformers - Three Phase Transformers - Constructional Details. Induction motors- Construction Details - Types - Principle of Operation - Torque Equation. Synchronous machines - Construction of Synchronous machines - Classification - Induced EMF Equation

Experiment: Load test on a single phase transformer

UNIT II SPECIAL MACHINES

9 Hrs

9Hrs

Principle of operation-Universal Motor – Switched Reluctance Motor – Permanent magnet Stepper Motor and Variable Reluctance stepper motor – DC and AC Servo Motor – Tach generator - Linear Induction Motor.

Experiment: Load test on a single phase induction motor

UNIT III INTRODUCTION TO BASICS OF ELECTRONIC COMPONENTS AND INSTRUMENTS

Study of electronic components: passive: -R,L,C -Types of R,L,C-Analysis of Color code in R,C :Active: - Diode, BJT, FET,MOSFET :Electronic Instruments: CRO : -Measurements of Voltage &Frequency, Function generator:- Frequency Measurements in Various Range and Wave Form : Power Supply: -Fixed and Variable :Multi-meter:-Measurement of Voltage ,Current, Frequency, R,L,C : IC tester:-Linear ICs and Non Linear ICs: Solder practice.

Experiment: Measurement of voltage and resistance using multimeter, Generation of different waveforms using function generator and measurement of voltage using CRO, Testing of IC using IC tester

UNIT IV PCB DESIGN PROCESS

9Hrs

Conception Level Introduction: Specifying Parts, Packages and Pin Names, Libraries and Checking foot prints of the components, Partlist, Netlist, Making Netlist Files, Placing Parts, Routing Traces, Modifying Traces, Mounting Holes, Adding Text, PCB Layout, DRC, Pattern Transfer.

Experiment: PCB layout for LED glowing circuit

UNIT V ASSEMBLING AND TESTING

9Hrs

Identifying the components and its location on the PCB, soldering of active and passive components, Testing the assembled circuit for correct functionality.

Experiment: PCB layout for power supply, PCB layout for automatic street light control

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Text books:

- 1. S. K. Bhattacharya, "Electrical Machines", TMH Publications N. Delhi.
- 2. Kothari.D.P and Nagrath. I.J., "*Electrical Machines*", Tata McGraw Hill Publishing Co. Ltd, New Delhi, 5th edition 2002.

References:

- 1. Orcad User manual.
- 2. Raghbir Singh Khandpur, "Printed Circuit Boards: Design, Fabrication, and Assembly", (McGraw-Hill Electronic Engineering-2006)
- 3. Dr. MurugeshKumar.K. "DC Machines & Transformers", Vikas Publishing House Pvt Ltd.,2nd edition 2003.
- 4. Deshpande M. V., "Electrical Machines" PHI Learning Pvt. Ltd., New Delhi, 2011.
- 5. Department Laboratory Manual.

Subject Code: BEC18L22	Subject Name: CIRCUITS DESIGN AND SIMULATION LAB	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Analysis of Solid State Devices	Lb	0	0/0	3/0	1

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

CO4

- To be able to verify the network theorems.
- To be able to design different types of voltage regulators.
- To be able to design different amplifiers and oscillatory circuits.
- To be able to design power amplifier and study its characteristics.
- To be able to design tuned amplifier and analyze its behavior.

COURSE OUTCOMES (COs): (3-5)

The students will be able to

CO1	Recall the knowledge on different network theorems and examine their effect on circuits
CO2	Analyze the characteristics of voltage regulators and feedback amplifier circuits.
CO3	Demonstrate the characteristics of Wave form Generators.
~~4	

CO4 Experiment Amplifiers and evaluate its characteristics.

Mapping of Course Outcomes with Program Outcomes (POs)		Mapping	of	Course	Outcomes	with	Program	Outcomes	(POs)
---	--	---------	----	--------	-----------------	------	----------------	----------	------	---

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	2	2	2	2	3	2	2	
CO2	3	3	3	3	3	2	2	2	2	3	1	2	
CO3	3	3	3	3	3	2	2	2	2	2	2	1	
CO4	3	3	3	3	3	2	2	2	2	2	1	2	
COs /PSOs	5		PSO	1		PS	O2		PSO3			PSO4	
CO1			3			3			3			2	
CO2			3			3		3 2		2			
CO3			3			3		2			2		

TT/N/I/T	indicates	Strongth of	Correlation	2 High	2 Modium	1 T 0337
IHI/ VI/I/	indicates	Strength of	Correlation	3- HION.	z- vieaiiim.	I-LAW

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
							√		

BEC18L22	CIRCUITS DESIGN AND SIMULATION LAB	0	0/0	3/0	1	

LIST OF EXPERIMENTS

DISCRETE COMPONENTS

- 1. HALF WAVE RECTIFIER WITH AND WITHOUT FILTER
- 2. FULL WAVE RECTIFIER WITH AND WITHOUT FILTER
- 3. VOLTAGE REGULATOR-SERIES & SHUNT
- 4. FREQUENCY RESPONSE OF RC COUPLED AMPLIFIER
- 5. SCHMITT TRIGGER
- 6. TUNED AMPLIFIER

PSPICE SIMULATION

- 7. VOLTAGE SERIES FEEDBACK AMPLIFIER
- 8. AUDIO FREQUENCY AND RADIO FREQUENCY OSCILLATORS
- 9. MONOSTABLEMULTIVIBRATOR CIRCUITS.
- 10. ASTABLEMULTIVIBRATOR CIRCUITS
- 11. CLASS A POWER AMPLIFIER.
- 12. CLASS B POWER AMPLIFIER
- 13. VERIFICATION OF NETWORK THEOREMS
- 14. MESH AND NODE ANALYSIS
- 15. STUDY OF RESONANT CIRCUITS

Total no. of hours: 45

References:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject Code: BEC18L04	Subject Name: DIGITAL SIMULATION LAB	T / L/ ETL	L	T/SL r	P/R	С
	Prerequisite: Signals and Systems	Lb	0	0/0	3/0	1

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- Programmatically generate different types of signals using MATLAB.
- Perform sampling and generate waveforms.
- Generate time series perform convolution check stability perform DFT and IDFT computation using MATLAB.
- Program and analyze behavior of different types of systems using MATLAB.

COURSE OUTCOMES (COs): (3-5)

The Students will be able to

CO1	Generate different types of signals.
CO2	Perform sampling and generate waveforms.
CO3	Generate times series, perform convolution and check stability perform DFT and IDFT computation.
CO4	Program and analyze behavior of different types of systems using MATLAB.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	-	-	-	-	-	1	2
CO2	2	3	3	2	3	-	-	-	1	-	1	2
CO3	2	3	3	3	3	-	-	-	1	-	2	2
CO4	2	3	3	3	2	-	-	-	1	-	1	2
COs / PSOs		PSO	1		PS	O2		PSC	03		PSO4	

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	1	3	2	1
CO2	1	3	2	2
CO3	2	3	2	1
CO4	1	3	2	1

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
							✓		

BEC18L04	DIGITAL SIMULATION LAB	0	0/0	3/0	1	

LIST OF EXPERIMENTS

SIGNALS AND SYSTEMS

- 1. GENERATION OF SIGNAL SEQUENCE
- 2. SAMPLING & WAVEFORM GENERATION
- 3. REPRESENTATION OF TIME-SERIES; COMPUTATION OF CONVOLUTION
- 4. STABILITY OF LTI SYSTEM.
- 5. DFT & IDFT COMPUTATION

CONTROL SYSTEM

- 6. IMPULSE RESPONSE OF FIRST AND SECOND ORDER SYSTEMS
- 7. TIME DOMAIN SPECIFICATIONS FOR CLOSED LOOP TRANSFER FUNCTION.
- 8. BODE PLOT AND POLAR PLOT FOR OPEN LOOP SYSTEM
- 9. STABILITY CHECK USING ROUTH-HURWITZ CRITERIONBODE PLOT AND ROOT LOCUS.
- 10. DETERMINATION OF CONTROLABILITY, OBSERVABILTY AND TRANSFER FUNCTION FROM STATE MODEL

Total no. of hours: 45

References:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject C BEC18TS			ıbject N			NICAL	SKIL	L- 1		T / L/ ETL	L	T/	SLr	P/F	2	С
		Pr	erequisi	te: Nor	ne					Lb	0		0/0	3/0)	1
L: Lecture							P:Pr	oject F	R : Rese	arch C:	Credit	s				
T/L/ETL:		y/Lab/	Embedo	ded The	eory an	d Lab										
OBJECT																
The objective is to develop the technical skill of the students.																
COURSE OUTCOMES (COs): (3-5)																
CO1 Develop the technical skills required in the field of study																
CO2		Bridge the gap between the skill requirements of the employer or industry and the competency														
		of the	student	S.												
CO3		Enha	nce the	employ	ability	of the s	tudents									
Mapping	g of Course Outcomes with Program Outcomes (POs)															
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO1	1	PO	12
CO1		3	3	1	2	3	-	-	-	1	2	,	-		2	2
CO2		3	2	3	3	3	-	-	2	2	3	;	1		-	-
CO3		1	2	3	3	3	2	1	-	1	2	;	-		2	2
COs / PS	Os		PSO1			PS	02]	PSO3	O3 PSO4					
CO1			2			3	3		3 2							
CO2			-			2	2			3 2						
CO3			-			2)			-				3		
3/2/1 indic	ates St	rength	of Cor	relation	3- H	ligh, 2-	Mediu	m,1-Lo)W			l				
	c/	,		þ						S				_		
>)Ce.		ng s	an	S	, ore		o s		ive			/ SC	ŠKI		Ils
gor	cie		eeri nce	ties	ial nce	n C	Program			lect	ical	3	jili	;a		Skil
Category	Basic Sciences		Engineering Sciences	Humanities and	Social Sciences	grar	Program Electives			n E	Practical Project	rroject Internships / Technical Skill		ınıc		Soft Skills
O	isei		Eng	l m	∞	Program Core		ДШ	Open Electives		P ₁		Int	ech		S
	Н	1		田		Ь)				Ţ		
													\checkmark			

BEC18TS1	TECHNICAL SKILL- 1	0	0/0	3/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

Subject Code: BEN18SK1	Subject Name : SOFT SKILL – I CAREER & CONFIDENCE BUILDING	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	ETL	0	0/0	3/0	1

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To create awareness in students, various top companies helping them improve their skill set matrix, leading to develop a positive frame of mind.
- To help students be aware of various techniques of candidate recruitment and help them prepare CV's and resume.
- To help student how to face various types of interviews, preparing for HR, technical interviews.

To help students improve their verbal reading, narration and presentation skills by performs various														
	mock sess													
	OUTCOM		s): (3-	5)										
	ts will be al													
CO1	Gain the	knowled	ge of va	rious t	op com	panies 1	leading	to impro	ovement	t in skill	s amongst t	hem.		
CO2	Developi	ng variou	is cand	idate re	ecruitme	ent tech	niques	like gro	up discu	ission, i	nterviews a	nd be able		
	to prepare	e CV's a	nd resui	mes.										
CO3	-		• •								interviews	,		
CO4	Improve their verbal, written and other skills by performing mock sessions.													
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/PO	s PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	1 - 2 2 3 2 3													
CO2	2 - 2 2 3 2								2	3				
CO3	_	-	-	-	-	2	-	2	2	3	2	3		
CO4	-	-	-	1	-	2	-	2	2	3	2	3		
COs / PSO	Os	PSO1			PSO2			PS	О3		PSO	4		
CO1		-			-				-		1			
CO2		-			-			-			2			
CO3		-			-				-		2			
CO4		-							-		2			
3/2/1 indic	ates Streng	gth of Co	rrelati	on 3-	High,	2- Med	lium,1-	Low	1		1			
	es	50	7	Ses	ဥ			es			√ III			
Ţ	enc	ring es	9	Sciences	Ŝ		m es	tiv		بر بر	ips Sk	ills		
oge	Scie	eee	1 :	Sci	Ħ		gra ctiv			tic	nshi	Sk		
Category	10.	Engineering Sciences	100	al	Program Core		Program Electives	l u		Practical Project	Internships /	Soft Skills		
	Basic Sciences	H o	Humonities and	Social	Pro			Open Electives	•	Д	Internships / Technical Skill	∞		
	r 1			7				+						
												✓		

BEN18SK1 | SOFT SKILL – I CAREER & CONFIDENCE BUILDING | 0 0/0 3/0 1

UNIT I 9Hrs

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self-awareness.

UNIT II 9Hrs

Group discussions / Do's and don'ts – handling group discussions / what evaluators look for interpersonal relationships / Preparation of Curriculum Vitae / Resume.

UNIT III 9Hrs

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self-introductions.

UNIT IV 9Hrs

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews.

UNIT V 9Hrs

Practical session on Group Discussion and written tests on vocabulary and reading comprehension

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

SEMESTER V

Subject	Sı	ıbject N	lame: I	DIGIT	AL SIC	SNAL			T / L/	L	T/SLr	P/R	С	
Code:		Ü	P	ROCE	ESSIN	J			ETL					
BEC18008	Pre	erequisit	te: Signa	als and	Systen	ns			Ту	3	1/0	0/0	4	
L: Lecture T	: Tuto	rial S	Lr : Sup	ervised	l Learn	ing P:	Proj	ect R:	Researc	h C: Cr	edits			
	T/L/ETL: Theory/Lab/Embedded Theory and Lab													
OBJECTIVES:														
• To learn the concepts of Fourier, transform and it's Applications.														
• To ur	• To understand the design techniques of digital IIR filters													
• To le	Γο learn the concepts and design techniques of digital FIR filters.													
• To ur	dersta	nd the c	concepts	s and a	oplicati	ons of l	Multi	- rate	samplin	ζ.				
	iderstand the concepts and applications of Multi – rate sampling. troduce the architecture of Digital Signal Processors.													
	0 0													
COURSE OUTCOMES (COs): (3-5) The students will be able to														
CO1				nafamn	200200									
			ırier traı				C'1.							
CO2			knowle		designi	ng IIR	filter	S.						
CO3			gn FIR											
CO4	Evalı	iate Mu	lti rate s	samplin	igs tech	nniques	for s	ystem c	esign.					
CO5	Desc	ribe the	module	s in the	archit	ecture o	of dig	gital sig	nal proc	essor.				
Mapping of	Course	e Outco	mes wi	th Pro	gram (Outcom	es (I	POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO	8 PO9	PO1	0 PO1	1 P	O12	
CO1	3	3	3	3	3	2	1	-	-	-	-		3	
CO2	3	3	3	3	3	2	1	-	-	-	-		3	
CO3	3	3	3	3	3	2	1	-	-	-	-		3	
CO4	3	3	3	3	3	2	1	-	_	_	-		3	
CO5	3	3	3	3	3	3	1	-	-	-	_		3	
COs / PSOs PSO1					PSO2				PSO3			PSO4		
CO1	CO1 3				3				2			3		

COs / PSOs	PSO1	PSO2	PSO3	PSO4						
CO1	3	3	2	3						
CO2	3	3	2	3						
CO3	3	3	2	3						
CO4	3	3	2	3						
CO5	3	3	2	3						
H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low										

H/M/L in	dicates St	rength of (Correlation	i 3- High	, 2- Mediu	m, 1-Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
				✓					

BEC18008 DIGITAL SIGNAL PROCESSING 3 1/0 0/0 4

UNIT I DFT AND FFT

12 Hrs

Discrete Fourier Transform (DFT) - Properties-Convolution of Sequences - Linear Convolution - Circular Convolution - Introduction to Radix-2 FFT- Properties - DIT (FFT)-DIF (FFT) - Algorithms of Radix-2FFT-Computing Inverse DFT by doing a direct DFT.

UNIT II DESIGN OF IIR FILTER

12 Hrs

IIR Filters- Properties of IIR Filters - Analog Low pass Filter Design - Butterworth Filter - Chebyshev Filter - Design of IIR Filters from Analog filters - Approximation of Derivatives - Impulse Invariance - Bilinear Transformation - The Matched z- Transformation - Frequency Transformation.

UNIT III DESIGN OF FIR FILTER

12 Hrs

FIR Filters - Characteristics of FIR Filters with Linear Phase-Properties of FIR Filters-Design of FIR Filters using Windows-Fourier Series Method-Frequency sampling Method - Limit cycle oscillations-Zero-Input Limit cycle oscillations- Overflow Limit cycle oscillations- Signal Scaling.

UNIT IV MULTIRATE SIGNAL PROCESSING

12 Hrs

Multirate Signal Processing- Interpolation - Decimation - Single and Multistage Realization - Filter Bank Implementation - Applications-Sub Band Coding.

UNIT V OVERVIEW OF DIGITAL SIGNAL PROCESSOR

12 Hrs

Overview of Digital Signal Processors – Application of Digital Signal Processor – Memory Architecture of DSP Processor – Von Neumann Architecture – Harvard Architecture - Architecture of TMS32C5X Processor – Addressing modes – Pipelining .

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 60

Textbooks:

- 1. John . G. Proakis and Dimitris C. Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson Education, Third edition 2006.
- 2. Sanjit. k Mitra "*Digital signal processing*", A Computer Based Approach, Tata McGraw Hill, New delhi, 2001.
- 3. A.V. Oppenheim, R.W. Schafer and J.R. Buck, "Discrete Time Signal Processing", 8th Indian reprint, Pearson 2004.

Reference Books:

- 1. Ashok Ambardar, "Analog and Digital Signal Processing", 2ndEdition, Thomson Learning 2000.
- 2. Ashok Ambardar, "Analog and Digital Signal Processing A Modern Introduction", 1st edition Thomson Learning 2006
- 3. Johnny R. Johnson, "Introduction to Digital Signal Processing", Minth printing, September 2001.
- 4. M. D. Srinath. K. Rajasekaran, R. Vishwanathan "Introduction to Statistical Signal Processing With Application", Prentice-Hall of India Pvt. Ltd., New Delhi, 1999.
- 5. B. Venkataramani, M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Application", Tata McGraw Hill, New Delhi, 2003.

Subject Code: BCS18I02	Subject Name: COMPUTER COMMUNICATION	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	Ту	3	0/0	0/0	3

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To understand different storage media and OSI layers
- To introduce the features of different I/O peripheral devices and protocols.
- To introduce the students the functions and standards of LAN.
- To introduce IEEE standard employed in computer networking.
- To make students to get familiarized with different protocols and network components.

COURSE OUTCOMES (COs): (3-5)

The students will able to

CO1	Describe the basic concepts of data communication and OSI layers.
CO2	Analyze data link control protocol.
CO3	Explain different standards and protocols used in LAN
CO4	Express the duties of network support layer and WAN protocols
CO5	Define the functions of upper OSI layer

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	3	-	-	-	-	-	-	1
CO2	2	2	3	3	3	-	-	-	-	-	-	1
CO3	2	1	2	1	3	-	-	-	-	-	-	1
CO4	2	1	2	1	3	3	-	-	-	-	-	1
CO5	2	1	1	1	3	-	-	-	-	-	-	1
COs / PSO	C	Þ	<u>:01</u>		T.	SO2			PSO3		P	SO ₄

				- 1
COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	2	1	3	2
CO2	2	1	3	2
CO3	2	1	3	2
CO4	2	1	3	2
CO5	2	1	3	2

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

BCS18I02 COMPUTER COMMUNICATION 3 0/0 0/0 3

UNIT I DATA COMMUNICATION

9 Hrs

Introduction, Basic concepts, OSI Reference Model, Transmission of Digital Data –Electrical Interface, Modems-Transmission rate-modem standards-Guided Media-Twisted –pair Cable-Coaxial Cable-Performance- Error Detection and Correction (CRC) - Time and Frequency domains Signals

UNIT II DATA LINK CONTROL AND PROTOCOLS

9 Hrs

Flow Control and Error Control, Stop And Wait - Sliding Windows- Automatic Repeat (ARQ), Asynchronous Protocols - X Modem, Y Modem, Synchronous Protocols - Character Oriented and Bit Oriented Protocols (HDLC).

UNIT III LOCAL AREA NETWORKS

9 Hrs

IEEE 802 Standards, LLC, MAC Layer Protocols –CSMA/CD Ethernet, Token Bus, Token Ring, FDDI, Distributed Queue Dual Bus, Switched Multimegabit Data Service

UNIT IV WIDE AREA NETWORKS

9 Hrs

Switching, Duties of the Transport Layer, ATM Protocol –Architecture Header Structure, Function of AAL Layer, Internetworking Devices, Repeater, Bridge, Routers and Gateways, Routing Algorithms- Link State and Distance Vector routing.

UNIT V UPPER OSI LAYERS

9 Hrs

Session Layer - Presentation Layer - Translation, Brief Introduction to Encryption / Decryption, Authentication -Data Compression, Application Layer Protocols, MHS, File Transfer , Virtual Terminal, Common Management Information Protocol.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Behrouz A. Forouzan, "Data Communication and Networking", Tata McGraw Hill, 5th Edition, 2013.
- 2. William A, Shay, "Understanding Data Communications and Networks", Thomson Learning, 3rd Edition 2003.
- 3. Gallo, "Computer Communications and Networking Technologies", Thomson Learning, 1st edition 2001.

Reference Books:

- 1. William Stallings, "Data and Computer Communication", Prentice Hall of India, Fifth Edition 1997.
- 2. Andrew S. Tanenbaum, "Computer Networks", prentice hall of India, Third Edition 1996.
- 3. Fred Hallsall, "Data Communication Computer Networks and Open System", Addison Wesley, 1992

Subject Code: BEC18ET2	Subject Name: ELECTROMAGNETIC WAVES AND TRANSMISSION LINES	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Engineering Physics I, Mathematics II	ETL	1	0/1	3/0	3

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To study the fundamental ideas in electrostatics and magneto statics.
- To learn the behavior of time varying fields and flow of electromagnetic power.
- To learn the behavior of transmission lines and to match the impedance in a cascaded stage.
- To study the characteristics of waveguide.

		,												
			COMES (COs): (3-5) 1 able to											
					C 1									
CO1	A	ınaly	ze the b	ehavior	of ele	ctric fie	eld and i	magn	etic field	and det	ermine i	ts parame	eters	
CO2							~				ehaviora			
CO3											ssociated	with it.		
CO4									guided wave transmission					
CO5	In	iterpi	ret the d	ifferent	types	of wav	eguides	and t	he beha	vior of T	E & TM	waves		
Mapping	g of Co	ours	e Outco	mes w	ith Pro	gram (Outcon	nes (F	POs)					
COs/PO)s F	201	PO2	PO3	PO4	PO5	PO6	PO'	7 PO8	PO9	PO10	PO11	PO12	
CO1		3	3	3	3	3	1	-	-	-	-	1	2	
CO2		3	3	3	3	3	-	-	-	-	-	1	2	
CO3		3	2	2	2	3	1	-	1	-	-	-	1	
CO4			1	3	-	-	-	-	2	-	2			
CO5	O5 3 3 2				2	3	1	-	-	1	-	-	2	
COs / PS			PSO	1			SO2			PSO3		PSO4		
CO1			3				3			2		1		
CO2			3				3			2		-		
CO3			1				3			-		-		
CO4			1				3			-			1	
CO5		a .	1				3			2			1	
3/2/1 ind	icates	Stre	ength of	Corre	lation	3- Hi	igh,2- N	<u>lediu</u>	m,1-Lo	W		ı		
Category	Basic	Sciences	Engineerin g Sciences	Humanities		Program Core	Program	riccincs	Open Electives	Practical / Project	Internships / Technical	Skill Soft Skills	Inter	
					✓	,								

BEC18ET2 ELECTROMAGNETIC WAVES AND TRANSMISSIONLINES 1 0/1 3/0 3

UNIT I ELECTROSTATICS AND MAGNETOSTATICS

9 Hrs

Fundamental Postulates of Electrostatics in free space, Coulomb's law, Determination of Electric field, Gauss's law and its applications, Electric potential, Electric Flux Density and Dielectric constant, Boundary Conditions for Electrostatic fields, Determination of Capacitance and Electrostatic Energy,

Fundamental Postulates of Magneto statics in free space, Vector Magnetic Potential, Biot-Savart's law and its applications, Scalar Magnetic Potential, Magnetic Field Intensity and Relative Permeability, Boundary Conditions for Magneto static fields, Determination of Inductance and Magneto static Energy, Determination of magnetic Force and Torque.

Experiments :Electrical field and potential inside the parallel plate capacitor, Capacitance and inductance of transmission lines

Simulation of electric field and potential inside capacitors-Magnetic field outside a straight conductor- Magnetic field of coils-Magnetic force on a current carrying conductor, Inductance of transmission lines

UNIT II TIME-VARYING FIELDS AND ELECTROMAGNETIC POWER

9 Hrs

Faraday's Law of Electromagnetic Induction, Maxwell's Equations (Integral and Differential Form), Wave Equations for a source-free region, Poynting vector and Poynting theorem.

Experiments : Electromagnetic induction, E.M wave radiation and propagation

UNIT III TRANSMISSION LINE THEORY

9 Hrs

General Theory of Transmission Lines –The transmission line, A General Solution – The Infinite Line – Wavelength, Velocity of propagation – Waveform Distortion – The Distortion-less line – Loading and– Input and transfer Impedance – Open and short circuited lines – Reflection loss .

Transmission lines equations at radio frequencies – Line of Zero dissipation – Voltage and Current on the dissipation-less line – Standing waves, Nodes, Standing wave ratio – Input impedance of the dissipation-less line – Power and impedance measurement on lines.

Experiments :Study of open and short circuited lines, Measurement of SWR, impedance and power

UNIT IV IMPEDANCE MATCHING AND GUIDED WAVES

9 Hrs

Impedance matching: Quarter Wave Transformer – Impedance matching by Single and Double Stub – Smith chart-Waves between parallel planes of perfect conductors – Transverse electric and transverse magnetic waves – Characteristics of TE and TM Waves – Transverse Electromagnetic waves – Velocities of propagation – Component uniform plane waves between parallel planes – Attenuation of TE and TM waves in parallel plane guides

Experiments: Impedance matching by quarter wave transformer and smith chart, Study of characteristics of te and tm waves

UNIT V RECTANGULAR AND CIRCULAR WAVEGUIDES

9 Hrs

Transverse Magnetic Waves in Rectangular Wave guides – Transverse Electric Waves in Rectangular Waveguides-Impossibility of TEM waves in waveguides - Solution of field equations in cylindrical co-ordinates – TM and TE waves in circular guides

Experiments :Study of rectangular waveguides, Study of circular waveguides

Total no. of hours: 45

Textbooks:

- 1. David K. Cheng, "Field and Wave Electromagnetics", McGraw Hill Inc., Third Edition, Malaysia, 1995
- 2. William H. Hayt& John A. Buck, "Engineering Electromagnetics", Tata Mc-Graw-Hill 7th Edition 2005.
- 3. Y. Mallikarjun Reddy, "Electromagnetic waves and transmission lines", Universities press, Edition 2015.
- 4. J.D. Ryder "Networks, Lines and Fields", PHI, New Delhi, 2003.
- 5. E.C. Jordan and K.G.Balmain "Electro Magnetic Waves and Radiating System", PHI, New Delhi, 2003.
- 6. Umesh Sinha "Transmission lines and networks", Sathya prakashan ,2010

Reference Books:

- 1. John D Kraus, "Electromagnetics", Tata McGraw Hill Book Co., New York, Third Edition, 1989.
- 2. Joseph Administer, "Theory and Problems of Electro Magnetics", Schaum's Outline Series Tata McGraw Hill, New York, 1986
- 3. Mathew N. O. Sadiku, "Elements of Electromagnetics", Oxford International Student Edition, Fourth Edition
- 4. David Griffiths, "Introduction to Electrodynamics", Pearson Education Limited 2014.
- 5. S.P. Seth, "Elements of Electromagnetic Fields", Dhanpat Rai & Co. David K. Cheng, "Field and Waves in Electromagnetism", Pearson Education, 1989.
- 6. Ramo, Whineery and Van Duzer: "Fields and Waves in Communication Electronics", John Wiley, 2003.
- 7. David M. Pozar: "Microwave Engineering", 2nd Edition John Wiley.
- 8. G.S.N Raju: "Electromagnetic Field Theory and Transmission Lines", Pearson Education, First edition 2005.

Subject Code: BEC18L06	Subject Name: COMMUNICATION LAB - I	T / L/ ETL	L	T/SLr	P/R	С			
Prerequisite: Communication Theory Lb 0 0/0 3/0									
L · Lecture T · Tutori	al SI r · Supervised Learning P · Project R · Resea	rch C· Cı	edits						

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To design and implement FIR & IIR filters, Multi rate signal processing, adaptive filters and fast Fourier transform using DSP processors.
- To measure signal parameters in time domain and frequency domain.
- To perform modulation and demodulation of various signals.

COURSE OUTCOMES (COs): (3-5)

	The	Students	will	be	able	to
--	-----	----------	------	----	------	----

CO1	Implement various kinds of digital filter perform Multi rate signal processing and perform Fast
	Fourier Transform using DSP processors.
CO2	Measure various signal parameters in time domain and frequency domain.
CO3	Perform modulation and demodulation of various signals.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO4 PO5 PO6 PO			O7 PO8 PO9 I			PO10 PO11 PO12		
CO1	3	3	3	3	3	2	2	-	-	-	-	2	
CO2	3	3	3	3	3	2	2	-	-	-	-	2	
CO3	3	3	3	3	3	2	2	-	-	-	-	2	
COs / PSOs		PSO1			PSO2			PSO3			PSO4		
CO1		3			3			3			3		
CO2		3			3			3			3		
CO3		3			3			3			3		

3/2/1 indicates Strength of Correlation 3- High,2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
							✓		

BEC18L06 COMMUNICATION LAB - I	0 0/0 3/0 1
--------------------------------	-------------

LIST OF EXPERIMENTS

DSP PROCESSOR IMPLEMENTATION

- 1. FIR & IIR FILTERS IMPLEMENTATION
- 2. MULTIRATE SIGNAL PROCESSING
- 3. ADAPTIVE FILTER
- 4. FAST FOURIER TRANSFORMS

MEASUREMENT ON SIGNAL PARAMETERS IN TIME DOMAIN & FREQUENCY

DOMAIN

- 5. DETERMINATION OF THE PHASE DIFFERENCE BETWEEN TWO SIGNALS (DERIVED FROM THE SAME SOURCE (SAY 1 KHZ SQUARE WAVE SIGNAL) USING TWO DIFFERENT PATHS, ONE OF WHICH CONTAINS A DELAY UNIT) USING CRO AND A PHASE DETECTOR CIRCUIT.
- 6. DETERMINATION OF THE FREQUENCY OF UNKNOWN SIGNALS: USING CRO AND LISSAJOUS PATTERNS.

ANALOG COMMUNICATION LAB

- 7. DESIGN AND TESTING OF AMPLITUDE MODULATION AND DEMODULATION.
- 8. DESIGN AND TESTING OF FREQUENCY MODULATION AND DEMODULATION.
- 9. DESIGN AND TESTING OF PRE-EMPHASIS.
- 10. DESIGN AND TESTING OF NARROW FREQUENCY MODULATION.

Total no. of hours: 45

References:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject C BCS18IL			Su LA	•	Name: (COMP	UTER	KS	T / L/ ETL	L	T/SLı	r P/	R	С		
			Pre	erequisi	ite: C p	rogram	amming and lab Lb 0 0/0 3/0									1
L : Lectur	ecture T : Tutorial SLr : Sup ETL: Theory/Lab/Embedded T ECTIVES: The students will be able to The students will be able to The students will be able to The students will be able to TRSE OUTCOMES (COs) : or completion of the lab using CO1 Establish and obser CO2 Transmit messages CO3 Encrypt and decrypt								ect R	: Resear	ch C: C	Credits				
							d Lab									
OBJECT	IVES	:														
• T	he stuc	dents	will	be able	e to imp	implement the different protocols										
• T	he stuc	dents	will	be able	e to imp	lemen	t and co	mpare	the v	arious ro	uting al	gorith	nms			
• T	he stuc	dents	will	be able	e to ind	epende	ntly use	the NS	S2 sir	nulator t	ool.					
						_										
						NS2 simulator, Students will be able to										
CO1							characteristics of point-to-point network with n nodes.									
CO2							n different network nodes.									
CO3											work.					
CO4			_				-			-						
CO5							IS2, OP									
COs/P		f Course Outcomes with Pros PO1 PO2 PO3					PO5	PO6	PO	7 PO8	PO9	PO	10	PO11	P	O12
CO	1	3	3	3	3	3	3	-	-	-	-	1		-		2
CO	2	(3	3	3	3	3			-	-	1	-	-		2
CO	3	3	3	3	3	3	3	-	-	_	-	1		-		2
CO	4	3	3	2	3	3	3	-	-	_	-	1		-		2
CO	5						3	-	_	_	-	1		-		2
COs / P	SOs			PSO1			PSC)2		P	SO3			PS()4	
CO	1			3			3				2		2			
CO	2			3			3				2		2			
CO	3			3			3				2			2		
CO				3			3				2			-		
	CO5 3					3							3			
3/2/1 indi	indicates Strength of Correlati					n 3-]				-Low	1		1	1		
Category Basic Sciences Engineering Sciences Aumanities and Social				Sciences	ore				s / .			Internships / Technical Skill		Soft Skills		

BCS18IL2 COMPUTER NETWORKS LAB 0 0/0 3/0 1

LIST OF EXPERIMENTS

Using NS2/OPNET

- 1. SIMULATE THREE NODES POINT-TO-POINT NETWORKS WITH A DUPLEX LINK BETWEEN THEM. SET THE QUEUE SIZE AND VARY THE BANDWIDTH AND FIND THE NUMBER OF PACKETS DROPPED.
- 2. APPLY TCP AGENT BETWEEN N0 TO N3 AND UDP N1 TO N3. APPLY RELEVANT APPLICATIONS OVER TCP AND UDP AGENTS CHANGING THE PARAMETERS AND DETERMINE THE NUMBER OF PACKETS SENT BY TCP/UDP.
- 3. SIMULATE THE DIFFERENT TYPE OF INTERNET TRAFFIC SUCH AS FTP AND TELNET OVER A NETWORK AND ANALYZE THE THROUGHPUT.
- 4. SIMULATE A TRANSMISSION OF PING MESSAGE OVER A NETWORK TOPOLOGY CONSISTING OF 6 NODES AND FIND THE NUMBER OF PACKETS DROPPED DUE TO CONGESTION.
- 5. SIMULATE AN ETHERNET LAN USING N NODES CHANGE ERROR RATE AND DATA RATE AND COMPARE THE THROUGHPUT.
- 6. SIMULATE AN ETHERNET LAN USING N NODES AND SET MULTIPLE TRAFFIC NODES AND DETERMINE THE COLLISION ACROSS DIFFERENT NODES.
- 7. SIMULATE AN ETHERNET LAN USING N NODES AND SET MULTIPLE TRAFFIC NODES AND PLOT CONGESTION WINDOW FOR DIFFERENT SOURCE/DESTINATION

Using C/C++

- 8. WRITE A PROGRAM FOR ERROR DETECTING CODE USING CRC-CCITT (16BIT)
- 9. WRITE A PROGRAM FOR DISTANCE VECTOR ALGORITHM TO FIND SUITABLE PATH FOR TRANSMISSION
- 10. WRITE A PROGRAM FOR SIMPLE RSA ALGORITHM TO ENCRYPT AND DECRYPT THE DATA
- 11. WRITE A PROGRAM FOR HAMMING CODE GENERATION FOR ERROR DETECTION/CORRECTION

Total no of hours: 45

References:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject C BEC18TS		S	bubject N	Name: 7	ГЕСН	NICAL S	2	T / L/ ET	L L	T/SLr	P/R	С		
		P	rerequis	ite: Nor	ie				Lb	0	0/0	3/0	1	
L : Lecture	e T : T	`utorial	SLr:	Supervi	sed Le	arning P	: Projec	R : Re	search (C: Credit	S	•	•	
T/L/ETL:	Theory	y/Lab/.	Embedd	ed Theo	ry and	Lab								
OBJECTIVE: The objective is to develop the technical skill of the students.														
COURSE	OUT	COM	ES (COs	s):(3-	5)									
CO1					_	required i	n the fie	ld of stu	dy					
CO2			e the gap students		en the	skill requ	irements	of the	employ	er or indu	ıstry and	the com	petency	
CO3		Enhar	nce the e	mployal	oility o	f the stud	ents.							
Mapping	of Cou	urse O	utcome	s with F	rogra	m Outco	mes (PC	s)						
COs/Po	s]	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		3	3	1	2	3	-	-	-	1	2	-	2	
CO2		3	2	3	3	3	-	-	2	2	3	1	1	
CO3		1	2	3	3	3 3 2 1				1	2 - 2			
COs / PS	Os		PSO1			PSO	2		PSO3	3	PSO4			
CO1			2			3			2			2		
CO2			-			2			3		2			
CO3			-			2			-					
3/2/1 indic	eates S	Streng	th of Co	rrelatio	n 3-	High, 2-	Mediur	n,1-Low	7					
Category	Basic	s ng s s ees				Program Core Program Program Electives			Open Electives Practical / Project		Internships / Technical Skill		Soft Skills	
											✓			

BEC18TS2	TECHNICAL SKILL -2	0	0/0	3/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

SEMESTER-VI

Subject Code: BEC18009	Subject Name: DIGITAL COMMUNICATION	T / L/ ETL	L	T/SLr	P/R	С
BECTOOO	Prerequisite: Communication Theory	Ту	3	1/0	0/0	4

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits$

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To study detection, estimation and discuss the process of sampling, quantization and coding that are fundamental to the digital transmission of analog signals.
- To understand the concepts of different digital modulation techniques and their applications in our dayto-day life

to-	∙day life	•											
									e encod	ling an	d decoding	of digital	
da	ta streai	ms for the	ir relia	able trans	mission (over no	oisy chani	nels.					
COURSE				: (3-5)									
The studen													
CO1	In	terpret th	e samp	oling proc	ess in re	al-time	systems	and reco	nstruct	the sig	nal with the	;	
	es	timation (of nois	se									
CO2	D	esign a sy	stem v	without di	stortion	and int	erference	;					
CO3	Н	one their inferences to develop various modulation technologies for the state of the art											
	cc	ommunication.											
CO4	D	Demonstrate their skills in generating a unique code for detecting the error in digital											
		mmunica											
CO5	A	pply their	r unde	erstanding	to imp	rove th	he digital	commu	nication	n effic	iency in a	multipath	
	en	vironmer	ıt.										
Mapping of	of Cour	se Outco	mes v	vith Prog	ram Ou	tcomes	(POs)						
COs/POs	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								PO12			
CO1	3	3	3	3	3	2	1	-	-	-	-	3	
CO2	3	3	3	3	3	2	1	-	-	-	-	3	
CO3	3	3	3	3	3	2	1	-	-	-	-	3	
CO4	3	3	3	3	3	2	1	-	-	-	1	3	
CO5	3	3	3	3	3	3	1	-	-	-	1	3	
COs / Ps	SOs]	PSO1		I	PSO2		P	SO3		PSC	D4	
CO1			3			3			3		3		
CO2	2		3			3			3		3		
CO3	}		3			3			3		3		
CO4	ļ		3			3			3		3		
CO5	;		3			3			3		3		
H/M/L indic	ates Stre	ength of Co	rrelatio	on 3- High	h, 2- Medi	ium, 1-L	ow			•			
	Ş				ď)							
>	nce	1 . B) S	ies ial	ج ا	5	a s	ss	_	` 1	ps / al	IIs	
g01	cie	eer	gineering ciences manities I Social ciences ram Con ram Con cogram ectives open ectives rriships rriships chnical ft Skills										
Category	cS	gi	Engineering Sciences Humanities and Social Sciences Program Core Electives Copen Electives Practical / Project Practical / Project Skill Skills										
C	Basic Sciences	Eng	S	Hum and Sci	֝֟֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		БП	田	غ ا	Ξ –	Inte	Sc	
	B												
					√	/							

BEC18009 DIGITAL COMMUNICATION 3 1/0 0/0 4

UNIT I DETECTION, ESTIMATION AND SAMPLING PROCESS

12 hrs

Model of Digital Communication System, Gram Schmidt Orthogonalization Procedure, Matched Filters, Correlation Receivers, Error Probability, Maximum Likelihood Estimation, Linear Prediction and Prediction Filters, Sampling Theorem, Quadrature Sampling of Band-Pass Signals, Reconstruction of a message from its samples

UNIT II WAVEFORM CODING TECHNIQUES AND BASEBAND SHAPING 12 hrs

PCM and TDMA Principles, Channel Noise and Error Probability, Quantization Noise and SNR, Differential Pulse Code Modulation and Delta Modulation, Speech Coding at Low Bit Rates, Power Spectra of PAM Signals, Inter Symbol Interference, Nyquist Criterion for distortionless baseband transmission, Correlative Coding and Precoding, Eye Patterns and Equalization Techniques.

UNIT III DIGITAL MODULATION TECHNIQUES

12 hrs

Coherent Binary Modulation Techniques, Coherent Quadrature Modulation Techniques, Non Coherent Binary Modulation Techniques, Power Spectra, Bandwidth Efficiency, Bit versus Symbol Error Probabilities

UNIT IV ERROR CONTROL CODING

12 hrs

Need for Coding, Types of Codes, Linear Block Codes, Cyclic Codes, Convolution Codes, Maximum Likelihood Decoding of convolutional Codes, Distance Properties and Sequential Decoding of convolutional Codes, Trellis coding, Viterbi coding.

UNIT V SPREAD SPECTRUM SYSTEMS

12 hrs

Generation of Pseudo Noise Sequences, Correlation Properties, Direct Sequence Spread Spectrum Systems, Frequency Hop System, Signal Space Dimension and Processing Gain , Probability of Error, Antijam and Multipath Performance.

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 60

Textbooks:

- 1. Simon Haykin, "Digital communications", John Wiley & Sons, 1988.
- 2. John. G. Proakis, "Digital Communication", McGraw Hill Inc., Third Edition, Malaysia, 1995.
- 3. B.P. Lathi, "Modern Digital and Analog communication system", Oxford publications, Third edition.

Reference Books:

- 1. Roy Blake, "Electronic Communication systems", Thomson Learning, 2nd edition 2002.
- 2. M.K. Simen, "Digital Communication Techniques Signal Design & Detection", Prentice Hall of India, 1999.
- 3. Bernard Sklar, "Digital Communication: Fundamentals and Applications", Prentice Hall, 2011 Edition.
- 4. Upamanyu Madhow, "Fundamentals of Digital Communication", Cambridge University Press, 2008
- 5. Robert G. Gallager, "Principles of Digital Communication", Cambridge University Press 2008.

Subject Code: BEC18010	Subject Name: INTRODUCTION TO VLSI AND EMBEDDED SYSTEM DESIGN	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Digital Electronics	Ту	3	0/0	0/0	3

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

CO₅

- > To learn the basics of MOS Transistors.
- > To study the design of combinational logic circuit using CMOS.
- > To learn CMOS sequential logic circuits design.
- To learn the concepts of modeling a digital system using HDL.
- > To study the basics of PIC microcontroller.

COURSE OUTCOMES (COs): (3-5)

The students will be able to

The students will e	to dole to
CO1	Gain sound knowledge in the basics CMOS Circuits.
CO2	Analysis and design of different combinational circuits.
CO3	Identify the techniques involved in the analysis and synthesis of sequential circuits.
CO4	Expertise in digital system design using VHDL & Verilog.
CO5	Understand the basics of 16F877 PIC Microcontroller.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1													
CO1	3	3	3	3	3	2	1	-	-	-	-	2	
CO2	3	3	3	3	3	2	1	-	-	- 1	-	2	
CO3	3	3	3	2	3	2	1	-	-	-	-	2	
CO4	2	3	3	2	3	2	1	-	-	-	-	2	
CO5	3	3	3	2	2	2	1	-	-	1	-	2	
COs / PSOs		PSO1			PSC)2		PS	O3		PSO4		
CO1		3			3				3		3		
CO2		3			3				3		2		
CO3		3			3			2			2		
CO4		3			3			2			2		

3/2/1 indicates Strength of Correlation 3- High, 2- Medium,1-Low

3

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
				~					

3

BEC18010 INTRODUCTION TO VLSI AND EMBEDDED SYSTEM DESIGN

3 0/0 0/0 3

UNIT I MOS TRANSISTOR THEORY

9 Hrs

Introduction – NMOS and PMOS transistor, Threshold voltage, Body effect, MOS device – Basic DC equations, Second order effects, MOS models, Small signal AC characteristics, Complementary CMOS Inverter, Power dissipation and scaling of MOS transistors.

UNIT II DESIGNING COMBINATIONAL LOGIC CIRCUITS

9 Hrs

Static CMOS design – Complementary CMOS, Propagation Delay and Power Consumption in static CMOS, Pseudo NMOS Logic, Pass Transistor Logic, Transmission gates, Dynamic CMOS Design – Basic principle, Speed and Power dissipation of Dynamic logic, Signal integrity issues in dynamic design, CMOS Domino logic, np CMOS logic.

UNIT III DESIGNING SEQUENTIAL LOGIC CIRCUITS

9 Hrs

Introduction – Timing metrics for sequential circuits, Classification of memory elements, Static latches and registers – The bi-stability principle, Multiplexer based latch, Master slave edge triggered register, Static SR flip flop, Dynamic latches and registers – Dynamic transmission gate edge triggered registers, clocked CMOS register.

UNIT IV VHDL & VERILOG PROGRAMMING

9 Hrs

VHDL background – VHDL requirement, Elements of VHDL, operators, Basic concepts in VHDL, Structural modeling, Behavioral modeling and Dataflow modeling in VHDL and Simple programs, Verilog HDL – Basic concepts – Gate Level modeling, Dataflow modeling and Behavioral modeling – Simple programs.

UNIT V PIC MICROCONTROLLER

9 Hrs

Introduction - PIC16F877 Micro controller overview, Special Function Registers, I/O Ports, Timers, Oscillators, Capture/ Compare and PWM module, Serial communication module, Analog module and Instruction set.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Neil H.E. Weste, Kamran Eshraghian, "Principles of CMOS VLSI Design A system perspective", second edition, Addison Wesley,1997.
- 2. Jan M. Rabaey, Ananth Chandrakasan, Borivoje Nikolic, "Digital *Integrated Circuits: A Design perspective*", second edition, Prentice Hall of India, 2003.
- 3. Zainalabedin Navabi, " VHDL Analysis and modeling of Digital Systems", Second edition, McGraw Hill International Editions, 1998.

Reference Books:

- 1. A. Pucknell, Kamran Eshraghian, "Basic VLSI Design", Third Edition, Prentice Hall of India, 2007.
- 2. R. Jacob Baker, Harry W. Li, David E. Boyce, "CMOS circuit design, Layout and Simulation", Prentice Hall of India, 2005.
- 3. J. Baskar, "A VHDL Primer", Third edition, Pearson Education, 2004.
- 4. Samir Palnitkar, "Verilog HDL, A Guide to Digital Design and Synthesis", second edition, Pearson Education, 2003.
- *5. pic-microcontroller.com/free-eBook-pic-microcontrollers.*

Subject Code: BEC18ET3	Subject Name: DESIGN AND IMPLEMENTATION OF LINEAR INTEGRATED CIRCUITS	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Electronic Circuits, Digital Electronics	ETL	1	0/1	3/0	3

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: \ Credits \ T/L/ETL: Theory/Lab/Embedded \ Theory \ and \ Lab$

OBJECTIVES:

- To introduce the basics of linear integrated circuits.
- To understand the applications of operational amplifiers.
- To learn the design of comparators, signal generators and timers.
- To design active filters and PLL.
- To learn the concepts of IC regulators and Data converters.

COURSE	OUTCOMES	(COs):	(3-5)

The Students will	be able to
CO1	Recall and express the basics of linear IC's.
CO2	Analyze and experiment various applications of diode and rectifier using op-amp.
CO3	Demonstrate comparators and signal generators using op-amp.
CO4	Design and illustrate the characteristics of active filters and PLL.
CO5	Experiment IC regulators and implement data convertors for real time application.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	3	2	1	3	-	-	-	-	2	
CO2	2	3	3	3	3	1	-	-	-	-	-	1	
CO3	3	2	3	3	3	-	-	-	-	-	2	2	
CO4	3	3	3	3	3	1	-	-	-	-	2	1	
CO5	3	3	3	3	3	-	-	-	-	-	-	2	
COs / PSOs		PSO:	1		PSO2			PSO3			PSO4		
CO1		1			2	2		2			2		
CO2		3			3	3			2			2	
CO3		3			3			1			2		
CO4		3			3			1			2		
CO5		1			-	}		1			2		

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
				✓					

BEC18ET3	DESIGN AND IMPLEMENTATION OFLINEAR INTEGRATED	1	0/1	3/0 3
	CIRCUITS			

UNIT I INTRODUCTION TO INTEGRATED CIRCUITS

9 Hrs

Integrated circuit and its classification, Introduction to Operational amplifier, Ideal Op-Amp, DC & AC Characteristics, Slew rate and methods of improving slew rate, CMRR, PSRR, Frequency Response and Compensation techniques.

Experiments:

- Measure input bias current, input offset current, input offset voltage of the given op-amp
- Design voltage follower to measure slew rate.
- Measure cmrr for a given circuit and compare measured value with calculated value

UNIT II APPLICATIONS OF OPAMP IC741

9 Hrs

Inverter and Non-Inverter - Summer and Subtractor - Multiplier and Divider - Differentiator and Integrator - Instrumentation Amplifier - AC Amplifier - Op- Amp Circuits using Diodes, Precision Rectifier - Clipper and Clamper - Sample and Hold Circuit - Log and Antilog Amplifiers.

Experiments:

- Design an inverting and non-inverting amplifier for required gain using ic741
- Design and realize adder and subtractor using ic741.
- Design integrator and differentiator using ic741.
- Design clipper and clamper circuit using ic741.

UNIT III COMPARATORS AND SIGNAL GENERATORS

9 Hrs

Applications of Comparators – Regenerative Comparators (Schmitt Trigger) – Square Wave Generator (Astable Multivibrator) – Monostable Multivibrator – Triangular Wave Generator – Saw Tooth Wave Generator – Sine Wave Generators.

Experiments:

- Design Schmitt trigger using ic741 for given values of utp<p
- Design monostable multivibrator for required pulse width using ic741.
- Design a stable multivibrator for required frequency and duty cycle using ic741

UNIT IV ACTIVE FILTERS AND PLL

9 Hrs

RC Active Filters: Low pass – High pass – Band pass – Band reject – Notch – First order, Second order Filters – Switched Capacitor Filters – Counter Timers.PLL Basic Principles – Phase Detector and Comparator: Analog and Digital Voltage Controlled Oscillator – Low pass Filter - PLL – Applications of PLL

Experiments: (PSPICE)

- Design & obtain frequency response of first order hpf & lpf filters
- Design & obtain frequency response of notch, bpf & brf filters

UNIT V IC REGULATORS AND DATA CONVERTERS:

9 Hrs

IC voltage regulators: Introduction, Fixed voltage regulators, SMPS, current limiting and current foldback techniques using IC723.

 $DAC/ADC\ Techniques-Integrating\ DAC\ /ADC\ Specifications,\ High\ Speed\ A/D\ Converters$

Experiments: (PSPICE)

- Design a voltage regulator for a given voltage.
- Calculate line, load regulation for a voltage regulator using ic723
- Construct a 4-bit r-2r ladder type dac
- Set up 4-bit successive approximation type ads and study its performance

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Text books:

- 1. James. M. Fiore, "Operational Amplifiers and Linear Integrated Circuits", First Edition, Thomson Learning.
- 2. Roy Choudhury and Shail Jain, "Linear Integrated Circuits", Wiley Eastern Ltd., 1991.
- 3. Coughlin and Dirscol, "Operational Amplifiers and Linear Integrated Circuits", Prentice Hall of India Pvt., Ltd., 1992

Reference books:

- 1. Millman and Halkias, "Integrated Electronics", McGraw Hill, 1992.
- 2. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Third Edition, TMH, 2002.
- 3. Ramakant A. Gayakwad, "Op amp and Linear Integrated Circuits", Fourth edition, PHI.

Subject Code: BEC18L07	Subject Name: COMMUNICATION LAB II	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Communication Lab I	Lb	0	0/0	3/0	1

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To learn the concepts of analog pulse modulation techniques.
- To study the working of digital modulation system.
- To study the different types of information coding.

COURSE OUTCOMES (COs): (3-5)

The students will be able to

CO1	Apply various digital modulation techniques for the state of art of communication.
CO2	Generate error correcting codes for transmitting signals.
CO3	Interpret the sampling process and reconstruct the signal

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	2	2	1	-	-	-	2	
CO2	3	3	3	3	3	3	2	1	-	-	-	2	
CO3	2	3	3	3	3	2	1	1	-	-	-	2	
COs / PSOs	PSO1				PSO2			PSO3			PSO4		
CO1	0				2			2			2		

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	2
CO2	3	3	3	2
CO3	3	3	3	2

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
							✓		

BEC18L07 COMMUNICATION LAB II	0	0/0	3/0	1	
-------------------------------	---	-----	-----	---	--

LIST OF EXPERIMENTS

- 1. DESIGN AND TESTING OF PULSE AMPLITUDE MODULATION & DEMODULATION.
- 2. DESIGN AND TESTING OF PULSE WIDTH MODULATION & DEMODULATION.
- 3. DESIGN AND TESTING OF PULSE POSITION MODULATION & DEMODULATION.
- 4. DESIGN AND TESTING OF ASK, FSK AND PSK
- 5. STUDY OF LINE CODING AND DECODING TECHNIQUES
- 6. STUDY OF SAMPLING
- 7. STUDY OF PULSE CODE MODULATION
- 8. DESIGN & TESTING OF EYE PATTERN
- 9. BLOCK/HAMMING CODES.
- 10. PN SEQUENCE GENERATOR.
- 11. DELTA MODULATION AND TIME DIVISION MULTIPLEXING

Total no. of hours: 45

References:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject Code: BEC18L08	Subject Name: VLSI AND EMBEDDED SYSTEM DESIGN LAB	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Digital Electronics, Analysis of Solid State Devices	Lb	0	0/0	3/0	1

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To design and simulate combinational logic circuits using Xilinx.
- To design and simulate sequential logic circuits.
- To interface ADC, DAC, DC motor, stepper motor with PIC microcontroller.

COURSE OUTCOMES (COs): (3-5)

The Students will be able to

CO1	Design & implement combinational circuits like adder, multiplexer, de multiplexer etc.,
-----	---

CO2 Construct sequential circuits like FFs, counters, shift registers.

CO3 Investigate I/O devices, ADC, DAC, motors with microcontroller.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	-	-	-	-	-	2
CO2	3	3	3	3	3	2	_	-	_	_	-	2
CO3	3	3	3	3	3	2	-	-	-	-	-	2

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	2	3	2	2
CO2	2	3	2	2
CO3	1	3	2	1

H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
							✓		

BEC18L08 VLSI AND EMBEDDED SYSTEM DESIGN LAB 0 0/0 3/0 1

LIST OF EXPERIMENTS

SIMULATION OF DIGITAL CIRCUITS USING XILINX

- 1. DESIGN AND TESTING OF ADDER AND SUBTRACTOR
- 2. DESIGN AND TESTING OF MULTIPLEXER, DEMULTIPLEXER, ENCODER, DECODER.
- 3. DESIGN AND TESTING OF MAGNITUDE COMPARATOR WITH 4/8 BITS.
- 4. DESIGN AND TESTING OF JK, D, T AND SR FLIP FLOPS, AND REGISTERS
- 5. DESIGN AND TESTING OF SYNCHRONOUS & ASYNCHRONOUS COUNTERS.
- 6. DESIGN AND TESTING OF SHIFT REGISTERS (RIGHT / LEFT).

INTERFACING WITH PIC MICROCONTROLLER

- 7. ADC INTERFACE WITH LM35.
- 8. STEPPER MOTOR INTERFACE
- 9. TRAFFIC LIGHT CONTROLLER INTERFACE
- 10. DC MOTOR INTERFACE
- 11. LCD DISPLAY INTERFACE.
- 12. LED INTERFACE

Total no. of hours: 45

References:

• Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject Cod BEN18SK2	le:		LITAT		T SKII D QUA				T / L/ ETL	L	T/SLr	P/1	R	С
		Prerec	quisite:]	None					ETL	0	0/0	3/	0	1
L : Lecture T	: Tutori	al SL1	: Super	vised Le	earning	P : Proj	ect R:	Research	C: Cre	dits			I.	
T/L/ETL: Th	neory/Lal	o/Embed	ded Th	eory and	l Lab									
OBJECTIV	E: The r	nain obj	ective is	s to strer	gthen th	e logica	al and ar	rithmetic	reasoni	ng sk	ills of th	ne stud	lents	
COURSE OUTCOMES (COs): (3-5)														
CO1	Re	cognize	and app	oly arithi	netic kn	owledge	e in a va	riety of c	ontexts				_	
CO2	Ability to identify and critically evaluate philosophical arguments and defend them from criticism. Define data and interpret information from graphs.													
CO3							<u> </u>	•						
Mapping of														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	1		<u>2011</u>	P	O12
CO1	-	-	-	-	-	2	1	-	3		2	3		3
CO2	-	-	-	-	-	2	1	1	3		3	3	_	1
CO3	-	-	- DCO1	-	-	2	1	1		3 3		3	3	
COs / PS	SOS		PSO1		-	PSO2	+	<u> </u>	PSO3		PSO4			
CO1 CO2			_			_			2			1 1		
CO2									1			<u> </u>		
3/2/1 indicat		gth of (- Correla	tion 3	- High, 2	- 2- Medi	um.1-I	ow	1			1		
Si Zi I mulcat		Ĭ									S	<u>. T</u>		S
Category	Basic Sciences	Engineering	Sciences	and Social Sciences	Program Core Program Electives		Open Electives	Dractical	Project	Internships	Skill		Soft Skills	
													~	′

BEN18SK2	SOFT SKILLS – II	0	0/0	3/0 1	
	QUALITATIVE AND QUANTITATIVE SKILLS				

UNIT 1 Logical Reasoning I

9Hrs

Logical Statements – Arguments – Assumptions – Courses of Action.

UNIT 2 Logical Reasoning II

9Hrs

Logical conclusions – Deriving conclusions from passages – Theme detection.

UNIT 3 Arithmetical Reasoning I

9Hrs

Number system – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss – Ratio & Proportion – Partnership.

UNIT 4 Arithmetical Reasoning II

9Hrs

Time & Work – Time & Distance – Clocks – Permutations & Combinations – Heights & Distances – Odd man out and Series.

UNIT 5 Data Interpretation

9Hrs

Tabulation – Bar graphs – Pie graphs – Line graphs.

Total no. of hours: 45

Reference Book:

- 1. R. S. Agarwal, A modern approach to Logical Reasoning, S. Chand& Co., (2017).
- 2. R. S. Agarwal, A modern approach to Verbal and Non verbal Reasoning, S. Chand& Co., (2017).
- 3. R. S. Agarwal, Quantitative Aptitude for Competitive Examinations, S. Chand& Co., (2017).
- 4. A. K. Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).
- 5. B. S. Sijwali, Indusijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

Subject Co BEC18L09					PROJEC STRIAL			L	: / ./ C TL	L	T/S Lr	P/R	С
		Prerequi	site: Co	re Cou	rces			L	lb	0	0	3/0	1
L : Lecture	T : Tutor	ial SLr:	Supervi	sed Le	earning P	: Projec	R:1	Research (C: Cre	dits	1	l	l
T/L/ETL:	Γheory/L	ab/Embedo	ded The	ory and	d Lab								
OBJECTIVE The main of Organization COURSE (bjective o				to provide	e a short	-term v	work expe	erience	e in a	n Indus	stry/ Com	pany/
COURSE C					dustry / or	ganizati	on/con	npany per	tainin	g to t	he dom	nain of stu	ıdy.
CO2			get an insight of an industry / organization/company pertaining to the domain of study. acquire skills and knowledge for a smooth transition into the career.										
CO3		To gain fiel						rofessiona	al netv	vork.			
Mapping of	f Course	Outcome		rogra	m Outco	mes (PO	s)						
COs/POs	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9) I	PO10	PO11	PO12
CO1	3	2	2	3	3	2	2	1	3		3	-	3
CO2	3	2	2	3	3	2	2	1	3		3	-	3
CO3	3	2	2	3	3	2	2	1	3		3	-	3
COs / PS	SOs	PS	01		PS	02		PS	03			PSO4	ļ
CO1			3		2			3				3	
CO2			3		2			3				3	
CO3			3		2			3	3			3	
3/2/1 indica	ates Stre	ngth of Co	rrelatio	on 3-	High, 2-	Mediun	n,1-Lo)W	•		_	,	
Category	Basic Sciences	Engineering Sciences	Humanities	and Social Sciences	Program Core Program Electives			Open Electives	Electives Practical / Project		Internships / Technical Skill		Soft Skills
											✓		

BEC18L09	MINI PROJECT / INPLANT TRAINING/	0	0	3/0 1	
	INDUSTRIAL TRAINING				

MINI PROJECT/ INDSUTRIAL TRAINING:

Students will have an opportunity to expose their knowledge and talent to make an innovative project. Students are supposed to do innovative projects useful to industries/society in the area of relevant Engineering, inter and multi-disciplinary areas, under the guidance of a staff member. They have to prepare a project report and submit to the department.

At the end of the semester Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

INTERNSHIP:

Students are supposed to undergo internship in related Industries for a minimum period of 30 days cumulatively during the semester. They have to prepare a report on the Internship with a certificate in proof from competent authority in the industry. At the end of the semester Viva-Voce examination will be conducted by the Examiners duly appointed by the Head of the department and the students will be evaluated

Subject Code: BEC18TS3		Subject N	Name: TE	CHNIC	CAL S	KILL -	3		T / L/ ETL	L	T/SLr	P/R	С
	=	Prerequis	ite: None						Lb	0	0/0	3/0	1
L : Lecture T :	Tutorial	SLr : Su	pervised L	earning	P : Pr	oject R	: Resea	arch C:	Credits				•
T/L/ETL: Theo	ry/Lab/E	mbedded '	Theory and	d Lab									
OBJECTIVE:	The obj	ective is to	develop t	he tech	nical s	kill of th	e stude	ents.					
COURSE OU'													
CO1	Dev	elop the te	chnical sk	ills requ	ired ir	the fiel	d of stu	ıdy					
CO2	the s	idge the gap between the skill requirements of the employer or industry and the competency of estudents.											
CO3	Enh	ance the e	mployabili	ty of the	e stude	ents.							
Mapping of Co	ourse Ou	itcomes w	ith Progra	ım Out	comes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1	3	3	3	2	2	3	2	-	1	-	2		3
CO2	3	3	3	2	2	2	2	-	3	-	2		3
CO3	3	3	3	2	2	3	2	-	3	-	2		3
COs / PSOs		PSO1			PSO	2		PS	03		l .	PSO4	
CO1		3			3			2	2			3	
CO2		3			3			2	2			3	
CO3		3			3			2	2			3	
H/M/L indicat	es Stren	gth of Cor	relation	H- Hig	gh, M-	Mediu	n, L-L	ow					
											_		
Category	Sciences	Engineering Sciences	Humanities and Social Sciences	Program	Core	Program Electives Open		Open Electives	Practical /	Practical / Project			Soft Skills
											./		

BEC18TS3 TECHNICAL SKILL - 3 0 0/0 3/0 1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

SEMESTER-VII

Subject Code: BEC18016	Subject Name: DIGITAL IMAGE PROCESSING AND ITS APPLICATIONS	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Signals and Systems, Digital signal processing	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To provide introduction to students the fundamentals of Digital Image Processing system and its breadth and depth of the field.
- To enable the students, acquaint with principles of image acquisition system and imaging technologies are used in various fields.
- To provide in depth knowledge to students on various unitary form of Image transforms techniques and its practical realization.
- To analyze the spatial and frequency domain enhancement techniques and students to apply appropriate algorithms to perform image enhancement, image restoration, image segmentation and image compression.
- To Design a typical digital image processing for specific application like Machine vision. Vision based

	_	~ 1	_	image probiles, re				* *			ne vision, Vis tc.	ion based	
COURSE OU	TCOM	ES (CO		· · · · · · · · · · · · · · · · ·									
The students w				2 1 1									
CO1										g and a	equisition.		
CO2		•		nage tran									
CO3	Discus	s the im	age enh	ancemer	it techni	ques, de	fining d	ifferent k	kinds of	filterin	ıg.		
CO4	Recog	nizing tl	ne vario	us image	degrada	ation mo	dels and	d categor	izing in	nage res	storation meth	ods.	
CO5	Articu seman		ious im	age com	pression	technic	ques and	l interpre	et the fu	ındame	ental Python s	yntax and	
Mapping of C	ourse C	utcome	es with	Progran	Outco	mes (PC	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO12	
CO1	3	3	3	2	3	2	1	-	-	-	-	2	
CO2	3	3	3	3	3	3	1	-	-	-	2		
CO3	3	3	3	3	3	3	1	-	-	-	-	2	
CO4	3	3	3	3	3	3	1	-	-	-	1	2	
CO5	3	3	3	3	3	3	1	-	-	-	1	2	
COs / PSOs		PSO1			PSO	2		PS	03		PSO4	1	
CO1		2			2			3			2		
CO2		3			3			3	3		2		
CO3		3			3			3			3		
CO4		3			3			3			3		
CO5		3			3			3	3		3		
3/2/1 indicates	Streng	th of Co	orrelati	on 3-1	High, 2-	Mediu	n, 1-Lo	W				Γ	
Category	Basic	Engineering	Sciences	Humanities and Social Sciences	Program Core	Program	Electives	Deen Electives Open Electives Practical / Project Project Technical		Internships / Technical Skill	Soft Skills		
						✓							

BEC18016 DIGITAL IMAGE PROCESSING AND ITS APPLICATIONS 3 0/0 0/0 3

UNIT I DIGITAL IMAGE FUNDAMENTALS

9 Hrs

Need for DIP- Fundamental steps in DIP – Elements of visual perception -Image sensing and Acquisition – Image Sampling and Quantization – Imaging geometry.

UNIT II IMAGE TRANSFORMS

9 Hrs

Two dimensional Fourier Transform- Properties – Fast Fourier Transform – Inverse FFT Discrete cosine transform and KL transform.-Discrete Short time Fourier Transform Wavelet Transform- Discrete wavelet Transform.

UNIT III IMAGE ENHANCEMENT

9 Hrs

Spatial Domain: Basic relationship between pixels- Basic Gray level Transformations – Histogram Processing – Smoothing spatial filters- Sharpening spatial filters. Frequency Domain: Smoothing frequency domain filters- sharpening frequency domain filters- Homomorphic filtering

UNIT IV IMAGE RESTORATION & SEGMENTATION

9 Hrs

Overview of Degradation models –Unconstrained and constrained restorations-Inverse Filtering- Wiener Filter - Feature Extraction Detection of discontinuities – Edge linking and Boundary detection-Thresholding- -Edge based segmentation-Region based Segmentation.

UNIT V APPLICATIONS

9 Hrs

Pattern, Signature, Character Recognition- Texture and Shape Analysis- Biometric and Biomedical Image Processing.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Text books:

- 1. Rafael C. Gonzalez& Richard E. Woods Digital Image Processing Pearson Education- 3/e Reprint 2014.
- 2. Anil. K. Jain Fundamentals of Digital Image Processing- Pearson Education, 9th Reprint, 2002.

References:

- 1. B. Chanda & D. Dutta Majumder Digital Image Processing and Analysis Prentice Hall of India 2006.
- 2. William K. Pratt Digital Image Processing John Wiley & Sons, 4/e, 2007
- 3. Tinku Acharya, Ajoy K. Ray Image Processing: Principles and Applications- John Wiley & Sons, 2005.

Subject Code: BMG18003	Subject Name: PRINCIPLES OF MANAGEMENT	Ty/L b/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: None	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To enable the students to study the evolution of Management and types of business organization.
- To enable the students to understand the nature of planning and its process and decision making steps and process.
- To enable the students to understand the nature and purpose of organizing types of organization authority and its types and Human Resource Management and its concepts.
- To understand the foundation of individual and group behavior and various motivational theories, techniques, job satisfaction concepts and communication theories.

 To understand the concept of controlling its system and processes. 															
COURSE	OUT	ГСОМ	ES (COs	s):(3-5	()										
	O1		To kno	ow the ev	olution						ization,	Organizat	ional		
				and env											
C	O2										ecision-	making st	eps.		
	O3			ne the co											
	O4		Analyz	ze indivio	dual, gro	oup beh	avior an	d related	concep	ts.					
	O5			ite systen					nniques.						
Mapping		urse O	utcome				nes (PO								
COs/PO)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		-	-	-	-	-	-	2	3	3	2	2	2		
CO2		-	-	-	-	-	-	2	3	3	2	2	2		
CO3		-	-	-	-						2	2			
CO4		-	-	-	-	-	-	2	3	3	2				
CO5		-	-	-	-	-	-	2	3	3	2	2	2		
COs / PS	Os		PSO1			PSO	2		PSC)3		PSC)4		
CO1			1			-			1			2			
CO2			1			-			1 2				2		
CO3			1			-			1			2			
CO4			1			-			1			2			
CO5			1			-			1			2			
3/2/1 indic	cates	Streng	th of Co	rrelatio	n 3- H	ligh, 2-	Mediun	n, 1-Low	V		1				
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives		Open Electives	Practical /	Project Internships /	Technical Skill	Soft Skills	Management Science							
				√											

BMG18003 PRINCIPLES OF MANAGEMENT 3 0/0 0/0 3

UNIT-I INTRODUCTION

9Hrs

Management: Importance – Definition – Nature and Scope of Management Process – Role and Functions of a Manager – Levels of Management – Development of Scientific Management and other Schools of thought and approaches.

UNIT-II PLANNING

9Hrs

Planning: Nature – Importance – Forms – Types – Steps in Planning – Objectives – Policies – Procedures and Methods – Natures and Types of Policies – Decision – making – Process of Decision – making – Types of Decision.

UNIT-III ORGANIZATION

9Hrs

Organization: Types of Organizations – Organization Structure – Span of Control and Committees – Departmentalization – Informal Organization.

UNIT-IV DECENTRALISATION

9Hrs

Authority – Delegation – Decentralization – Difference between Authority and Power – Responsibility – Recruitment – Sources, Selection, Training – Direction – Nature and Purpose.

UNIT-V COORDINATION AND CONTROL

9Hrs

Co-ordination – Need, Type and Techniques and requisites for excellent Co-ordination – Controlling – Meaning and Importance – Control Process.

Total no. of hours: 45

Text books:

- 1.C.B.Gupta, Management Theory & Practice -Sultan Chand & Sons New Delhi.
- 2. L.M.Prasad, Principles & Practice of Management Sultan Chand & Sons New Delhi.
- 3. P.C. Tripathi &P.N Reddy, Principles of Managements Tata Mc.Graw Hill New Delhi.

Reference Books:

- 1. Weihrich and Koontz, Management A Global Perspective.
- 2. N.Premavathy, Principles of Management Sri Vishnu Publication Chennai.
- 3. J.Jayasankar, Business Management Margham Publication Chennai.

Subject Cod BEC18ET4	le:	Subje	ct Nam	e : INT	ERNET	OF THI	NGS		T / ET		L	T / S.Lr	P/R	C
DECIGET			quisite:		amming v	with Linu	x, Co	mputer	ET		1	0/1	3/0	3
L : Lecture 7	: Tutoria				arning P	: Project	R : F	Research	C: C	redits			- I	ı
T/L/ETL : T			•		_	5								
To s	ES: tudy basic tudy IoT v esign IoT	with Clou	ud envii	onment		ohysical c	levice	es.						
COURSE O The students			s):(3-	5)										
CO1		ibe the fu	ındame	ntals abo	out IoT									
CO2					pplication	n								
CO3	Design	n IoT sys	stems w	ith Clou	d enviror	nment.								
CO4	Articu	late desi	gn of Ic	T devic	es using l	Python so	oftwa	re.						
CO5	Devel	evelop new applications with Raspberry Pi and Intel Galileo Arduino board.												
Mapping of	Course (Outcome	s with	Progran	n Outcor	nes (POs	s)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO	8 1	PO9	PO1	10 P	011	PO12
CO1	2	2	3	3	3	2	1	_		-	-		-	2
CO2	2	2	3	3	3	2	1	_		-	1		_	2
CO3	2	2	3	3	3	2	1			_	-		_	2
CO4	2	2	3	3	3	2	1			-	-		-	2
CO5	2	2	3	3	3	2	1	_		2	-		1	2
COs / PSOs		PSC	l			SO2		I	PSO				PSO4	
CO1		2				2			3				3	
CO2		2				2			3				3	
CO3		2				2			3				3	
CO4		2				2			3				3	
CO5	4 64	2		1) II' l /	2		-	3				3	
H/M/L indic	eates Stre	ngth of (Correla	ation 3	3- High, 2	2- Mediu	m, 1	-Low						
Category	Basic Sciences Engineering Sciences Humanities and Social		and Social Sciences	Program Core	Program	Electives	Open Electives	Open Electives Practical / Project		Internships /	reciniteal Skin	Soft Skills		
		+						1	-+		-			

BEC18ET4 INTERNET OF THINGS 1 0/1 3/0 3	BEC18ET4
---	----------

UNIT I INTRODUCTION TO INTERNET OF THINGS

9 Hrs

Definition and Characteristics of IoT – Things in IoT – IoT Protocols – Logical Design of IoT – IoT enabling technologies – IoT Levels.

Experiment: To familiarize with Arduino /Raspberry Pi and performance necessary software installation

UNIT II DOMAIN SPECIFIC IoT AND M2M

9Hrs

Home Automation – Cities – Environment – Energy – Retail – Logistics – Agriculture – Industry Health and Life style – Introduction to M2M – Difference between IoT to M2M –SDN and NFV for IoT.

Experiment: To write source code to interface temperature sensor (LM35) with Arduino nano

UNIT III IoT SYSTEM MANAGEMENT AND CLOUD

9 Hrs

Need for IoT System Management - SNMP - NETCONF - YANG - NETOPEER - IoT design methodology - Case study for IoT System - WAMP -Auto Bahn for IoT - Xively - Django- Amazon Web for IoT - Skynet IoT.

UNIT IV IoT SYSTEMS – LOGICAL DESIGN USING PYTHON

9 Hrs

Introduction – Installing Python – Python Data types and data structures – Control flow – Functions – Modules – Packages – File Handling – Data / Time Operations – Classes – Python packages of Interest for IoT.

Experiment: To write source code to blink the LED using Arduino nano, To write source code to control the stepper motor using Arduino nano, To write source code to interface 7-segment display with Arduino nano, To write source code to interface LCD display(16*2) with Arduino nano

UNIT V IoT PHYSICAL DEVICES

9 Hrs

Raspberry Pi – Linux on Raspberry Pi -Raspberry Pi Interfaces – Programming Raspberry Pi with Python – Arduino boards – Other IoT devices – Data analytics for IoT –Intel Galileo Arduino board Specification (with simple programs).

Experiment: To write source code to device monitoring with Arduino nano through blynk cloud, To write source code to control device with Arduino nano through blynk cloud, To write source code to moniter the distance with Arduino nano through blynk cloud, To write source code to control the motor with Arduino nano through blynk cloud

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Arshdeep Bahga. Vijaymadisetti, "Internet of things A hands- on approach", Universities press, First Editon, 2015.
- 2. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiley, First edition 2014.
- 3. C Hillar Gastn, "Internet of Things with Python", Packt publishing, first edition, 2016.

Reference Books:

- 1. Dominique D. Guinard and Vlad M. Trifa "Building the Web of Things With examples in Node.js and Raspberry Pi", June 2016 ISBN 9781617292682
- 2. Charalampos Doukas, "Building Internet of Things with the Arduino" ISBN/EAN13:1470023431 / 9781470023430
- 3. Gastón C. Hillar, "Internet of Things with Python", May 2016, PACKT Publishing limited.
- 4. Marco Schwartz "Internet of Things with the Raspberry Pi: Build Internet of Things Projects Using the Raspberry Pi Platform", Kindle Edition.

Subject Code: BEC18L10	Subject Name : MICROWAVE AND OPTICAL COMMUNICATION LAB	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Electromagnetic waves and Transmission Lines	Lb	0	0/0	3/0	1

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To have a detailed practical study of microwave diodes
- To study the optical devices and to use in the appropriate application.
- To establish the fiber optical communication link

COURSE OUTCOMES (COs): (3-5)

The students will be able to

CO1	Demonstrate the ability to design and conduct microwave experiments, analyze and interpret data.								
CO2	Demonstrate the skills to use modern engineering tools, software and equipment's to analyze								
	design problems.								
CO3	Design a system and to learn about measurement of fiber optic parameters.								

Mapping of Course Outcomes with Program Outcomes (POs)

COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	10 PO11 PO12			
CO1	3	3	3	3	3	1	1	-	-	-	- 1			
CO2	3	3	3	3	3	1	1	-	-	-	-	1		
CO3	3	3	3	3	3	1	1	-	-	-	-	1		
COs / PSOs	PSO1 I				PS	O2		PS	SO3		PSC)4		
CO1	3				3			3			2			
CO2	3				(3			3		2			
COL		2	-		,	,		-	2		2			

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
							✓		

BEC18L10 MICROWAVE AND OPTICAL COMMUNICATION LAB 0 0/0 3/0 1

LIST OF EXPERIMENTS

- 1. REFLEX KLYSTRON MODE CHARACTERISTICS.
- 2. MEASUREMENT OF GUIDE WAVELENGTH
- 3. MEASUREMENT OF VSWR AND IMPEDANCE OF UNKNOWN LOADS, INCLUDING MEASUREMENT OF HIGH VSWR.
- 4. MEASUREMENT OF THE COUPLING AND THE DIRECTIVITY OF WAVEGUIDE DIRECTIONAL COUPLERS.
- 5. MEASUREMENT OF INSERTION LOSS AND ISOLATION OF NON RECIPROCAL FERRITE DEVICES.
- 6. STUDY OF TEE JUNCTION (E-PLANE, H-PLANE AND E-H PLANE TEES.)
- 7. MEASUREMENT OF THE GAIN AND RADIATION PATTERN OF A WAVEGUIDE HORN ANTENNA
- 8. STUDY OF GUNN OSCILLATOR CHARACTERISTICS.
- 9. STUDY OF A FIBER-OPTIC COMMUNICATION LINK.
- 10. CHARACTERISTICS OF LED AND PIN DIODE
- 11. CHARACTERISTICS OF LASER DIODE
- 12. CHARACTERISTICS OF AVALANCHE PHOTODIODE
- 13. MEASUREMENTS OF FIBER PARAMETERS: NUMERICAL APERTURE, ATTENUATION

Total no. of hours: 45

References:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject Code: BEC18L11	Subject Name: OPEN CV-PYTHON FOR DIGITAL IMAGE PROCESSING LAB	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Digital Signal Processing	Lb	0	0/0	3/0	1
L: Lecture T: Tutor	ial SLr: Supervised Learning P: Project R: Resea	rch C: C	redits	S	•	•
T/L/ETL: Theory/La	ab/Embedded Theory and Lab					
OD IECTIVES.						

- The fundamentals of digital image processing Image transform used in digital image processing
- Image enhancement techniques used in digital image processing

1111	iage ein	iancen	ient tech	miques	usea 11	i digitai	image	proces	ssing				
COURSE The studen				: (3-5	5)								
CO1				t moda	lities a	and cur	rent te	chniq	ues in im	age acq	uisitio	on	
CO2	Use	the n	athema	tical pi	rincipl	es of di	gital in	nage e	nhancem	ent (co	ntrast	, gradients, r	noise)
CO3	Des	scribe	and app	ly the o	concep	ts of fe	ature d	letecti	on and c	ontour	findin	g algorithms	
CO4			e know al imagi							xample	s and	cases in th	e field of
CO5	Ind	epend	ently w	ork in (OpenC	V softw	are us	ing py	thon pro	gramm	ing		
Mapping of	of Cou	rse Ou	tcomes	with P	rogran	n Outco	mes (I	POs)					
			PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO12		
CO1		3	3	3	3	3	-	_	-	-	_	-	2
CO2	2	3	3	3	3	3	-	-	-	-	-	-	2
CO3	3	3	3	3	3	3	-	-	-	-	-	-	2
COs / Pa	SOs		PSO ₁			PSO2 PSO3					PSC)4	
CO1			3			_				-		2	
CO2			2			-				-		2	
CO3			-			-				-		2	
3/2/1 indic	eates St	rengtl	of Cor	relatio	n 3-	High, 2	- Medi	um, 1-	-Low				
Category	Basic	Sciences	Engineering Sciences		and Social Sciences	Program		Program Electives	Open Electives Practical / Project		Practical / Project	Internships / Technical Skill	Soft Skills

BEC18L11 Open CV-PYTHON FOR DIGITAL IMAGEPROCESSING 0 0/0 3/0 1 LAB

LIST OF EXPERIMENTS

- IMAGE PROCESSING IN OPEN CV
- CHANGING COLOR-SPACE
- 3. IMAGE THRESHOLDING
- 4. GEOMETRIC TRANSFORMATIONS OF IMAGES
- 5. SMOOTHING IMAGES
- 6. MORPHOLOGICAL TRANSFORMATIONS
- 7. IMAGE GRADIENTS
- 8. CANNY EDGE DETECTION
- 9. IMAGE PYRAMIDS
- 10. CONTOURS IN OPENCY
- 11. HISTOGRAMS IN OPENCV
- 12. IMAGE TRANSFORMS IN OPENCV
- 13. FEATURE DETECTION AND DESCRIPTION
- 14. CAMERA CALIBRATION AND 3D RECONSTRUCTION

Total no. of hours:45

References:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject Code: BEC18L12	Subject Name: PROJECT PHASE - I	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Core Courses	Lb	0	0/0	3/3	2

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

The objective of the Main Project is to culminate the academic study and provide an opportunity to explore a problem or issue, address through focused and applied research under the direction of a faculty mentor. The project demonstrates the student's ability to synthesize and apply the knowledge and skills acquired to real-world issues and problems. This project affirms the students to think critically and creatively, find an optimal solution, make ethical decisions and to present effectively.

COURSE C	OUTCOMES (COs): (3-5)
CO1	Apply the knowledge and skills acquired in the course of study addressing a specific problem or issue.
CO2	Formulate students to think critically and creatively about societal issues and develop user friendly
	and reachable solutions
CO3	Analyze research skills and demonstrate their proficiency in communication skills.
CO4	Make the students to face challenges of team work, prepare a presentation and demonstrate the innate
	talents.

Mapping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	1	2	3	3	2	1
CO2	3	3	3	3	3	2	1	2	3	3	2	1
CO3	3	3	3	3	3	2	1	2	3	3	2	1
CO4	3	3	3	3	3	2	1	2	3	3	2	1
COs/PSOs PSO1				PSO	2		PSO3 PSO4			04		

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	3
CO2	3	2	3	3
CO3	3	2	3	3
CO4	3	2	3	3

3/2/1 indic	eates Streng	gth of Corr	elation 3-	High,2- M	edium, 1-L	ow			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
							✓		

BEC18L12 PROJECT PHASE - I 0 0/0 3/3 2

Students are expected to do the Project in a group of 3 to 4 students. They should identify the area/topic of the Project and should collect the literatures related to the project. Students intending to do Industrial projects will approach the industries with the support of the university, identify the industrial problem and finalize the project. In case of Industrial projects apart from Industry guide, a guide has to be appointed by the department. At the end of the Semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted by the examiners duly appointed by the Head of the department

Subject Co BHS18FL		Subject Name: FOREIGN LANGUAGE T / L T L L ETL										/SL r	P/R	С	
			Prerequ	iisite: N	Vone					Ty	0		0/0	3/0	1
L : Lecture	T: Tut	orial	SLr : S	upervis	ed Lea	rning P	: Proje	ct R:	Research	C: Cre	dits				'
T/L/ETL:	Theory/	Lab/E	Embedde	d Theo	ry and	Lab									
OBJECTI To recogni foreign lan	ize the c														in a
COURSE	OUTC	OME	S (COs)	: (3-5)										
CO1	Ac	hieve	function	al profi	iciency	in liste	ning, sp	eaking	g, reading	, and w	ritin	g.			
CO2		velop quisiti	U	ht into	the nat	ure of la	ınguage	itself,	the proc	ess of la	angu	age a	ınd cı	ılture	
CO3	De	code,	analyze,	and in	terpret	authent	ic texts	of diff	erent gen	res.					
Mapping	Mapping of Course Outcomes with Program Outcomes (POs)														
COs/PO	s P	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO							PO12						
CO1		1	1	1	1	1	2	1	2	2	,	2	2	2	1
CO2		2	1	1	1	1	2	1	2	2		2	2		1
CO3		1	1	2	2	1	2	2	2	2		2	2		1
COs / PS	Os]	PSO1			PSO2			PSC	03				PSO ²	,
CO1			1			1			1					1	
CO2			1			1			1					1	
CO3			1			1		1	1					1	
H/M/L inc	dicates S	Streng	gth of Co	orrelati	ion F	I- High,	<u>, M- M</u>	edium,	, L-Low						
Category	Category Basic Sciences Engineering Sciences Aumanities		Humanities and Social	Sciences	Program Core	Program	Electives	Open Electives	Practical /	Project	;	Internships / Technical Skill		Soft Skills	
				✓											

BHS18FLX FOREIGN LANGUAGE 0 0/0 3/0 1

Foreign language is introduced in the curriculum to make the students globally employable. Students should select and register for any one of the foreign languages from the given list. At the end of the course students should be able to read, write and converse the language in the basic level. At the end of the semester the assessment will be done through internal examination by the examiner duly appointed by the head of the department.

SEMESTER VIII

						D L IV	112011	J1 ,						
Subject Co BEC18012		Sul	oject Na	ame: V	VIREL	ESS NE	TWOR	KS		T / L/ ETL	L	T/S	Lr P/R	С
		Pre	requisit	e: Com	puter (Commu	nicatio	n		Ty	3	1	0/0	4
L : Lecture							P : Proj	ect R	: Resea	arch C:	Credits			
T/L/ETL:	Theory	/Lab/E	mbedde	d Theo	ry and	Lab								
OBJECTI														
	-	-	_							-			plication	S.
	•		Ad hoc							_	•			
• To	under	stand t	he wire	eless se	ensor i	networ]	ks and	its M	IAC &	Routin	g proto	cols.		
COURSE				: (3-5	5)									
The Studer				la a a a a		of WII	A NI am	1 D A I	NT.					
CO1			stand t								1			
CO2			fy and											
CO3		Desig	n MAC	c proto	cols a	nd stud	y its ir	npler	nentati	on in A	d hoc	netwo	orks.	
CO4		Classi	fy the o	differe	nt netv	vork ro	uting	proto	cols an	d portr	ay thei	r sign	ificance	in the fiel
			eless n					_		•				
CO5		Learn	the arc	hitecti	are of	wireles	s sens	or net	works	and the	e metho	od of	data tran	smission
Mapping o	Mapping of Course Outcomes with Program Outcomes (POs)													
COs/Po	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO	B PO	9 PO	10	PO11	PO12
CO1		3	3	3	3	3	_	 -	_	_			2	2
CO2		3	3	3	3	3	-	_	_	_	-		2	2
CO3		3	3	3	3	3	-	-	-	-	-	-	2	2
CO4		3	3	3	3	3	-	-	_	-		-	2	2
CO5		3	3	3	3	3	-		_	-	-		2	2
COs / P	SOs		PSO1	5		PS	O2			PSO3			PS	O4
CO1			3				3			2				2
CO2			3				3			2				2
CO3			3 3 2									2		
CO4		3 2 2												
CO5 3 3 2 2 2 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low														
3/2/1 indic	eates St	rength	of Cor	relatio	n 3-	High, 2	- Medi	ium, l	l-Low					
Category Basic Sciences			Engineering Sciences	Humanities	and Social Sciences	Program Core Program Flogram		Open Electives		Practical / Project		Internships / Technical Skill	Soft Skills	
	щ			1						$\overline{)}$			Т	

BEC18012 WIRELESS NETWORKS 3 1/0 0/0 4

UNIT I WIRELESS LANS AND PANS

12Hrs

Introduction - FUNDAMENTALS OF WLANS- Technical Issues - Differences Between Wireless and Wired Transmission, Use of WLANs, Design Goals- Network Architecture - Infrastructure Based Versus Ad Hoc LANs, Components in a TypicalIEEE802.11 Network, Services Offered by a TypicalIEEE802.11 Network-IEEE802.11 STANDARD- Physical Layer, Basic MAC Layer Mechanisms- HIPERLAN standard-Bluetooth

UNIT II AD HOC WIRELESS NETWORKS

12Hrs

INTRODUCTION - Cellular and Ad Hoc Wireless Networks - definition, characteristics features, Applications of Ad Hoc Wireless Networks- Issues in ad hoc wireless networks - Ad Hoc wireless internet.

UNIT III MEDIUM ACCESS PROTOCOLS

12Hrs

MAC Protocols: design issues, Design goals of a MAC protocol For Ad Hoc wireless networks and classification of MAC protocols -Contention based protocols- with reservation, with scheduling mechanisms, protocols using directional antennas. IEEE standards: 802.11a, 802.11b, 802.11g, 802.15, 802.16.

UNIT IV NETWORK PROTOCOLS

12Hrs

Routing Protocols: Design issues, goals and classification of Routing Protocols - Proactive Vs reactive routing, Table-driven routing protocols: Destination sequence Distance – Vector routing Protocol, wireless Routing Protocol - On-demand routing protocols: Dynamic source Routing protocol, Ad Hoc on Demand Distance – vector Routing protocol - Hybrid Routing protocol : Core extraction distributed Ad Hoc routing protocol , Zone routing protocol - Power-aware routing protocols: Power – aware routing metrics.

UNIT V WIRELESS SENSOR NETWORKS

12Hrs

Introduction - Sensor Network Architecture - Data Dissemination - Data Gathering - MACPROTOCOLS for Sensor Networks - Location Discovery - Quality of a Sensor Network

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 60

TEXT BOOKS:

- C. Siva Ram Murthy and B. S. Manoj, Ad hoc Wireless Networks Architectures and protocols, 2nd edition, Pearson Education. 2007
- 2. Charles E. Perkins, Ad hoc Networking, Addison Wesley, 2000

REFERENCES:

- 1. Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, Mobile adhoc networking, Wiley-IEEE press, 2004.Mohammad Ilyas, The handbook of adhoc wireless networks, CRC press, 2002.
- 2. T. Camp, J. Boleng, and V. Davies "A Survey of Mobility Models for Ad Hoc Network
- 3. Research," Wireless Comm. and Mobile Comp., Special Issue on Mobile Ad Hoc Networking Research, Trends and Applications, vol. 2, no. 5, 2002, pp. 483–502.
- 4. A survey of integrating IP mobility protocols and Mobile Ad hoc networks, Fekri M. Abduljalil and Shrikant K. Bodhe, IEEE communication Survey and tutorials, v no.12007
- 5. V.T. Raisinhani and S.Iyer "Cross layer design optimization in wireless protocol stacks" Comp. communication, vol 27 no. 8, 2004.
- 6. V.T. Raisinhani and S.Iyer, "ÉCLAIR; An Efficient Cross-Layer Architecture forwireless protocol stacks", World Wireless cong., San francisco, CA, May 2004.
- 7. V. Kawadia and P.P. Kumar, "A cautionary perspective on Cross-Layer design, "IEEEWireless comm., vol 12, no 1,2005.

B.Tech ECE 2018 Regulation(Revised)

Subject Code: BEC18013	Subject Name: COGNITIVE RADIO	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Communication Theory, Digital Communication	Ту	3	0/0	0/0	3

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits$

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To enable the student to understand the evolving paradigm of cognitive radio communication and the enabling technologies for its implementation.
- To enable the student to understand the essential functionalities and requirements in designing software defined radios and their usage for cognitive communication.
- To expose the student to the evolving next generation wireless networks and their associated challenges

ch	alleng	es	es											
COURSE				:(3-	5)									
The Stude:			e to escribe t	ha hasi	e of th	a coftw	ara daf	inad ra	dios					
CO2										ftwara	defined	radio		
											uci ilicu	rauro		
CO3			esign the						gnitive	radios				
CO4		To	underst	and co	gnitive	radio a	rchitect	ure						
CO5		Ex	plain th	e conce	epts bel	nind the	wirele	ss netw	orks an	d next	generatio	on network	S	
Mapping	ping of Course Outcomes with Program Outcomes (POs)													
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		3	2	2	-	-	-	1	-	-	2	1	2	
CO2		3	2	2	2	3	-	-	-	1	2	1	3	
CO3			3	3	2	2	-	1	2	1	2			
	CO4 3 1 2				3	2	-	-	-	-	1	-	2	
CO5		2	3	3	2	3	-	-	-	1	2	-	3	
COs / PS	SOs		PSO1			PS()2		P	SO3		PSC)4	
CO1			3			-				-				
CO2			2			2				-		3		
CO3			3			3				2		-		
CO4			3			-				1		2		
CO5		2				2		<u> </u>	T T	2		-		
H/M/L in	dicate	tes Strength of Correlatio				H- Higi	n, MI- N	lediun	n, L-Lo	W	1			
Category	Basic	Sciences	Engineering Sciences	Humanities		Sciences Program Core		Electives	Open Electives		Practical / Project	Internships / Technical Skill	Soft Skills	
		✓												

BEC18013 COGNITIVE RADIO 3 0/0 0/0 3

UNIT I INTRODUCTION TO SDR

9 Hrs

Definitions and potential benefits, software radio architecture evolution – foundations, technology tradeoffs and architecture implications, Antenna for Cognitive Radio.

UNIT II SDR ARCHITECTURE

9 Hrs

Essential functions of the software radio, architecture goals, quantifying degrees of Programmability, top level component topology, Computational properties of functional components, interface topologies among plug and play modules, architecture partitions.

UNIT III INTRODUCTION TO COGNITIVE RADIOS

9 Hrs

Making radio self-aware, the cognition cycle, organization of cognition tasks, structuring knowledge for cognition tasks, Enabling location and environment awareness in cognitive radios – concepts, architecture, design considerations.

UNIT IV COGNITIVE RADIO ARCHITECTURE

9 Hrs

Primary Cognitive Radio functions, Behaviors, Components, A-Priori Knowledge taxonomy, observe – phase data structures, Radio procedure knowledge encapsulation, components of orient, plan, decide, act phases; knowledge representation, design rules.

UNIT V NEXT GENERATION WIRELESS NETWORKS

9 Hrs

The XG Network architecture, spectrum sensing, spectrum management, spectrum mobility, spectrum sharing, upper layer issues, cross – layer design.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

TEXT BOOKS:

1. Alexander M. Wyglinski, Maziar Nekovee, and Y. Thomas Hou, "Cognitive Radio

Communications And Networks - Principles And Practice", Elsevier Inc., 2010.

2. E. Biglieri, A.J. Goldsmith., L.J. Greenstein, N.B. Mandayam, H.V. Poor, "Principles of

Cognitive Radio", Cambridge University Press, 2013.

 Kwang-Cheng Chen and Ramjee Prasad, "Cognitive Radio Networks", John Wiley & Sons Ltd., 2009.

REFERENCES:

4. Khattab, Ahmed, Perkins, Dmitri, Bayoumi, Magdy, "Cognitive Radio Networks - From

Theory to Practice", Springer Series: Analog Circuits and Signal Processing, 2009.

5. J. Mitola, "Cognitive Radio: An Integrated Agent Architecture for software defined radio",

Doctor of Technology thesis, Royal Inst. Technology, Sweden 2000.

6. Simon Haykin, "Cognitive Radio: Brain -empowered wireless communications", IEEE Journal

on selected areas in communications, Feb 2005.

7. Ian F. Akyildiz, Won – Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, "Next generation /dynamic spectrum access / cognitive radio wireless networks: A Survey" Elsevier Computer

B.Tech ECE 2018 Regulation(Revised)

- Networks, May 2006.
- 8. Joseph Mitola, "Software Radio Architecture: A Mathematical Perspective" IEEE Journal on Selected Areas in Communication, Vol. 17, No. 4, April 1999.
- 9. HasariCelebi ,Huseyin Arslan, "Enabling location and environment awareness in cognitive radios", Elsevier Computer Communications, January 2008.

Subject BEC18		Su	bject N	ame :P	Project								P/R	С		
010		Pre	erequisi	te: Proj	ect Pha	se I			E7 Lb		0	<u>Lr</u> 0/0	12/12	8		
L : Lec	ture T :						g P:P	roject	R : Rese		C: C:		1			
			b/Embe				_	3								
	CTIVE															
The ob	jective	of the	Main P	roject i	s to cul	minate	the aca	ademic	study aı	nd pro	vide	an op	portunity	to explore		
problen	n or iss	sue, ad	dress th	rough	focused	and ap	oplied r	esearch	under	the di	recti	on of	a faculty	mentor. Th		
project	demon	strates	the stu	dent's a	ability t	to syntl	nesize a	and app	ly the k	cnowle	edge	and s	kills acqu	ired to real		
world i	ssues a	nd pro	blems. '	This pr	oject af	firms t	he stud	ents to	think cr	itically	y an	d creat	ively, find	l an optima		
			l decision			ent effe	ectively	•								
			MES (C	, ,												
CO1	Apply	the kn	owledg	ge and s	kills ac	quired i	n the co	ourse of	study a	ddress	sing	a spec	ific proble	m or issue.		
CO2	Form	ılate stı	students to think critically and creatively about societal issues and develop user friendly and													
		able sol		.o umik	cittical	iy and t	cicative	iy abot	11 300101	u1 155U	cs a	iu ucv	crop user.	iricitury and		
CO3									y in com							
CO4			dents to	face c	halleng	es of te	amwork	k, prepa	re a pre	sentati	on a	nd der	nonstrate	the innate		
	talents															
Mappi	ng of C	Course	Outcon	nes wit	h Prog	ram Oı	utcome	s (POs)								
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9]	PO10	PO11	PO12		
CO		3	3	3	3	3	2	3	2	3		3	2	1		
CO)2	3	3	3	3	3	2	3	2	3		3	2	1		
CO)3	3	3	3	3	3	2	3	3	3		3	2	1		
CO)4	3	3	3	3	3	2	3	3	3		3	2	1		
COs/	PSOs		PSO1			PSC)2		PS	03			PSC)4		
CO)1		3			-			3	3			3			
CO)2		3			-			3	3			3			
CO)3		3			-			3			3				
CO			3			-			3			3				
		tes Str	ength o	of Corr	elation	3- H	igh, 2-	Mediui	n, 1-Lo	w						
			50	o	a —						_					
OIT		se s		es es	cia	ш		um ⁄es] ,	/es	al /	t	ips cal l	ills		
Category	•	Basic Sciences	Engineerir	Sciences	and Social Sciences	Program	Core	Program Electives Open		Electives	Tica Siec		Practical Project		Internships Technical Skill	Soft Skill
Cat	٩	Sci.	igi	SC	Sci	Pro)	Pro ∃le		E E	rac	Pro	terr [ec]	oft		
_		-1	Д,	1 1	ਰ ਹੈ			, <u> </u>	'	_	Д		In T	∞		
		I										1				
												+				

BEC18L13 Project Phase - II 0 0/0 12/12 8

To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries. Students are expected to do a Project work either in an Industry or at the University in the field of relevant Engineering /inter-disciplinary /multi-disciplinary area in a group of 3 or 4 students. The work to be carried out in Phase II should be continuation of Phase I. Each group will be allotted a guide based on the area of Project work. In case of industrial Project external guide has to be allotted from Industry. Inter disciplinary/multi-disciplinary project can be done with students of different disciplines as a group. Monthly reviews will be conducted during the semester to monitor the progress of the project by the project review committee. Students have to submit the Project thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by the examiners duly appointed by the Controller of Examination. In case of industrial project certificate in proof has to be included in the report along with the bonofide certificate

ELECTIVE I- Electronics Stream

Subject Code: BEC18E01	Subject Name: MICROPROCESSOR AND MICROCONTROLLER	T / L/ ETL	L	T/SL r	P/R	С
	Prerequisite: Digital Electronics	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

CO5

- To study the architecture, addressing modes, and assembly language program of 80386 microprocessor.
- To understand the concepts of different peripherals and their applications
- To learn the functions of 8051 microcontroller and ARM processor and their applications.

COURSE OUTCOMES (COs):

Tha	students	337111	ha	ahl	a to
1110	SHICKETHS	will	1)	am	- 1()

CO1	Write assembly language program in 8085 and 8086 and understand the design of advanced processors.
CO2	Show their ability to interface peripherals with microprocessors
CO3	Hone their inferences to develop a hardware using 8051 microcontroller
CO4	Demonstrate their skills in writing an ALP in 8051 to do real time applications
CO5	Apply their understanding to do a project to develop an application using ARM processor.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	3	3	3	3	2	-	-	-	-	-	1		
CO2	2	3	3	3	3	2	-	-	-	-	-	1		
CO3	2	3	3	3	3	2	-	-	-	-	-	1		
CO4	2	3	3	3	3	2	-	-	-	-	-	1		
CO5	2	3	3	3	3	2	-	-	-	-	-	1		
COs / PSOs	PSO1				PSO2			PSO3			PSO4			
CO1		1			3			2			2			
CO2	1				3			2			2			
CO3	1				3			2			2			
CO4	1				3			2			2			

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
					✓				

2

BEC18E01 MICROPROCESSOR AND MICROCONTROLLER 3 0/0 0/0 3

UNIT I INTEL 8 BIT, 16 BIT & 32 BIT MICROPROCESSORS

9 Hrs

Introduction to 8085 & 8086 microprocessors – Instruction sets – Advanced 80386 Architecture, Addressing modes – Data types of 80386 – Real address mode of 80386 – Segmentation , paging , Salient features of PENTUM.

UNIT II PERIPHERALS INTERFACING

9 Hrs

Interfacing serial I/O(8251)-Parallel I/O(8255) –Keyboard and display controller (8279)-ADC/DAC Interfacing-Timer (8253). Programmable Interrupt Controller (8259), DMA controller, Applications of 8085

UNIT III 8051 MICROCONTROLLER

9 Hrs

8051 Microcontroller hardware I/O pins, Ports and circuits-External memory –Counters and Timers-Serial Data I/O –Interrupts.

UNIT IV 8051 PROGRAMMING AND APPLICATIONS

9 Hrs

8051 Instruction set -Addressing Modes -Assembly Language Programming -8051 interfacing LCD, ADC, Sensors, Stepper motors, Motors, Keyboard and DAC

UNIT V INTRODUCTION TO ARM PROCESSOR

9 Hrs

ARM Architecture –ARM programmer's model- ARM development tools-memory hierarchy-ARM assembly language programming-Simple Examples-Architectural support for operating system- ARM instruction Set-Embedded ARM Applications

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Text books:

- 1.Krishna Kant, "Microprocessors and Microcontrollers, Architecture, programming and system design using 8085, 8086, 8051 and 8096", PHI 2007.
- 2. Douglas V Hall, "Microprocessor and Interfacing, Programming and hardware", MH, 2006.
- 3. R.S. Gaonkar, "Microprocessor Architecture Programming and Application, with 8085", Wiley Eastern Ltd., New Delhi, 2013.

References:

- 1. Muhammad Ali Mazidi, Janice Gillispie Mazidi, RolinD.MCKinlay "The 8051Microcontroller and Embedded Systems", Second Edition, Pearson Education 2008.
- 2. Kenneth J. Ayala, "The 8086 Microprocessor: Programming & Interfacing the PC", Delmar Publishers, 2007.
- 3. A K Ray, K M Bhurchandi, Advanced Microprocessors and Peripherals, TMH, 2007.
- 4. Steve furber "ARM Systems on chip Architecture", Second Edition Addison Wesley trade computer publication, 2000.
- 5. John .B. Peatman "Design with PIC Microcontrollers", Pearson Education, 3rd Edition, 2004

de:		• 4 TAT	a	•	1 /		-	•,	D / T /	т	TD/C	D/D	
2		oject Na olicatio		Semiconductor devices and its					Γ/L/ ETL	L	T/S Lr	P/R	С
	Pre	requisit	e: Anal	ysis of	Solid st	tate De	vices	-	Гу	3	0/0	0/0	3
			•		_	P: Pro	oject I	R : Resea	rch C: (Credits			
•	/Lab/	Embed	ded The	eory an	d Lab								
VES:	_						_						
•	1 11												
•		_		_						and ut	ilize th	nem f	or
OUTC	OMI	ES (CO	s): (3-	5)									
A	pply 1	the diod	es for b	oasic el	ectronic	design	ı						
R	emen	nber the	operati	ions of	inverter	s.							
Ill	lustra	te the di	fferent	types o	of conve	erters.							
D	emon	strate th	ne desig	n of pr	otection	and sv	witch g	gear					
f Cou	se O	utcome	s with	Progra	m Out	comes	(POs)						
s P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO12
	2	1	2	2	2	1	1	1	1	2	1		1
	2	1	2	3	2	1	1	1	1	2	1		1
	2	1	1	2	2	2	2	1	2	2	2		2
	2	1	1	2	2	2	2	1	2	2	2		2
	2	2	3	3	2	1	2	3	3	2	_		2
)s		PSO1		PSO2)3		PSO4		
		2		3							1		
		2			3			2				1	
		1			1							2	
				1									
1 01						2 27						2	
ates St	rengt	th of Co	rrelati	on 3	- High,	2- Med	lium,	1-Low	1	1			
Category Basic Sciences		Engineering Sciences	Humanities and	Social Sciences	Program Core	Program	Electives	Open Electives	Practical /	Project	Internships /		Soft Skills
	OUTC ts will A B Country A Country A Country Coun	T: Tutorial Theory/Lab/ VES: To To var OUTCOMI ts will be ab Unders Apply Remen Illustra Demon f Course O PO1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	T: Tutorial SLr: Theory/Lab/Embedo VES: To learn the To gain the various apout COMES (COMES) (COMES	T: Tutorial SLr: Superv Theory/Lab/Embedded Theory/Lab/Embedded Theory VES: To learn the function of the control of the contr	T: Tutorial SLr: Supervised Lo Theory/Lab/Embedded Theory an VES: To learn the functions of To gain the knowledge various applications with the characteristic Apply the diodes for basic elements of Tourse Outcomes with Programmer of Tourse Outcomes with Progra	T: Tutorial SLr: Supervised Learning Theory/Lab/Embedded Theory and Lab VES: To learn the functions of spece To gain the knowledge about various applications with a regovernous applications with a regovernous will be able to Understand the characteristics of spece Apply the diodes for basic electronic Remember the operations of inverter Illustrate the different types of convergence of Course Outcomes with Program Outcomes With Program Outcomes With Program Outcomes Via PO1 PO2 PO3 PO4 PO5 PO1 PO2 PO3 PO4 PO5 PO5 PO1 PO2 PO3 PO4 PO5 PO5 PO1 PO2 PO3 PO4 PO5 PO5 PO1 PO2 PO3 PO4 PO5 PO5 PO1 PO2 PO3 PO4 PO5 PO5 PSO1 PSO2 PSO1 PSO2 PSO2 PSO3 PSO1 PSO2 And	T: Tutorial SLr: Supervised Learning P: Pro Theory/Lab/Embedded Theory and Lab VES: To learn the functions of special dioc To gain the knowledge about operativations applications with a regulated various applications of special dioc Apply the diodes for basic electronic design Remember the operations of inverters. Illustrate the different types of converters. Demonstrate the design of protection and system of the properties of the protection of the protection and system of the protection	Theory/Lab/Embedded Theory and Lab VES: To learn the functions of special diodes and To gain the knowledge about operation of various applications with a regulated power outcomes (COs): (3-5) to will be able to Understand the characteristics of special diodes Apply the diodes for basic electronic design Remember the operations of inverters. Illustrate the different types of converters. Demonstrate the design of protection and switch and the characteristics of special diodes for basic electronic design. Remember the operations of inverters. Illustrate the different types of converters. Demonstrate the design of protection and switch and the characteristics of special diodes. FOUR POS	T: Tutorial SLr: Supervised Learning P: Project R: Resear Theory/Lab/Embedded Theory and Lab VES: To learn the functions of special diodes and their a To gain the knowledge about operation of power of various applications with a regulated power supply. OUTCOMES (COs): (3-5) Its will be able to Understand the characteristics of special diodes Apply the diodes for basic electronic design Remember the operations of inverters. Illustrate the different types of converters. Demonstrate the design of protection and switch gear If Course Outcomes with Program Outcomes (POs) To PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 To PO1 PO2 PO3 PO4 PO5	T: Tutorial SLr: Supervised Learning P: Project R: Research C: Cheory/Lab/Embedded Theory and Lab VES: • To learn the functions of special diodes and their applica • To gain the knowledge about operation of power diodes various applications with a regulated power supply OUTCOMES (COs): (3-5) ts will be able to Understand the characteristics of special diodes Apply the diodes for basic electronic design Remember the operations of inverters. Illustrate the different types of converters. Demonstrate the design of protection and switch gear of Course Outcomes with Program Outcomes (POs) The project R: Research C: Converted and their application and switch gear are guarded power supply OUTCOMES (COs): (3-5) The project R: Research C: Converted and Labourge and Labour	T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits Theory/Lab/Embedded Theory and Lab VES: To learn the functions of special diodes and their applications. To gain the knowledge about operation of power diodes and utvarious applications with a regulated power supply OUTCOMES (COs): (3-5) ts will be able to Understand the characteristics of special diodes Apply the diodes for basic electronic design Remember the operations of inverters. Illustrate the different types of converters. Demonstrate the design of protection and switch gear f Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO16 2 1 2 2 2 2 1 1 1 2 2 2 2 2 1 2 2 2 2	T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits Theory/Lab/Embedded Theory and Lab VES: • To learn the functions of special diodes and their applications. • To gain the knowledge about operation of power diodes and utilize the various applications with a regulated power supply OUTCOMES (COs): (3-5) ts will be able to Understand the characteristics of special diodes Apply the diodes for basic electronic design Remember the operations of inverters. Illustrate the different types of converters. Demonstrate the design of protection and switch gear f Course Outcomes with Program Outcomes (POs) FOI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO 2 1 2 2 2 2 1 1 1 2 2 2 2 2 1 2 1 2	T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits Theory/Lab/Embedded Theory and Lab VES: • To learn the functions of special diodes and their applications. • To gain the knowledge about operation of power diodes and utilize them for various applications with a regulated power supply OUTCOMES (COs): (3-5) Is will be able to Understand the characteristics of special diodes Apply the diodes for basic electronic design Remember the operations of inverters. Illustrate the different types of converters. Demonstrate the design of protection and switch gear If Course Outcomes with Program Outcomes (POs) To PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 2 1 2 2 2 2 1 1 1 2 2 1 1 1 1 1 1 1

BEC18E02 SEMICONDUCTOR DEVICES AND ITS APPLICATIONS 3 0/0 0/0 3

UNIT I SPECIAL DIODES

9 Hrs

Breakdown Diodes-Avalanche Multiplication, Zener breakdown and its characteristics, Tunnel Diodes – Principle and Characteristics, Photodiode and its characteristics, Photo Voltaic Effect, and Light Emitting Diodes, Four Layer diode and its characteristics

UNIT II APPLICATIONS OF DIODES

9 Hrs

Diode as clipper, clamper, comparator, sampling gate, voltage multipliers and peak detectors - Regulated Power Supply

UNIT III INVERTERS

9 Hrs

Single Phase and three phase inverters-Voltage source inverters-current source inverters-Multilevel inverters-Resonant inverters

UNIT IV CONVERTERS

9 Hrs

Single phase and three phase converters –Buck-Boost Converters-Dc to Dc converters-Ac to Ac Converters- Resonant Converters-Cycloconverters

UNIT V FIRING AND PROTECTING CIRCUITS

9 Hrs

Necessity of isolation, pulse transformer, optocoupler – Gate drives circuit: SCR, MOSFET, IGBTs and base driving for power BJT - Over voltage, over current and gate protections

Total no. of hours: 45

TEXT BOOKS:

- 1. Jacob Milman, Christos Halkias and Chetan D. Parikh, 'Integrated Electronics, Analog and Digital Circuits and Systems"
- 2. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition, New Delhi, 2004
- 3. B.W Williams 'Power Electronics Circuit Devices and Applications'.

REFERENCES:

- 1. P. S. Bimbra, 'Power Electronics", Khanna Publishers, Eleventh Edition 2003
- 2. Ned Mohan, T. M Undeland and W.P Robbin, "Power Electronics: converters, Application and design" John Wiley and sons. Wiley India edition, 2006
- 3. P.C. Sen, "Modern Power Electronics", Wheeler Publishing Co, First Edition, New Delhi, 1998

Subject Code: BEC18E03	Subject Name: BASICS OF ROBOTICS	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To introduce the basic concepts, parts of robots and types of robots.
- To make the student familiar with the various drive systems for robot.
- To develop a deep knowledge sensor and their applications in robot.
- To discuss about the various end effectors and manipulators.

 To develop a path planning and programming of robots

• To	o develo	op a p	ath plan	ning an	d prog	rammin	g of ro	bots.						
COURSE):(3-	5)									
The stude														
CO1		Identify the importance of robotics in today and future goods production. Describe the robot configuration and transmission systems.												
CO2	1	Desci	ibe the	robot c	onfigu	ration a	nd trans	smissio	n syster	ns.				
CO3		Manipulate the electronic and pneumatic manipulators.												
CO4		Investigate with the typical robot.												
CO5		Implement specialized software and working of mobile robot.												
Mapping	Mapping of Course Outcomes with Program Outcomes (Pos)													
Cos/Po	os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		3	3	3	3	3	3	3	3	3	3	3 3		
CO2		3	3	3	3	3	3	3	2	3	3	3	3	
CO3		3	3	3	3	3	3	2	2	3	3	3	3	
CO4	,	3	3	3	3	3	2	3	3	3	2	3	3	
CO5		2	2	2	3	3	2	3	3	3	2	3 3		
Cos / PS	SOs		PSO1			PS	O2		F	SO3	•	PSO4		
CO1			3			3	3	3 3		1				
CO2			3			3			3			2		
CO3			3			3			3			3		
CO4		3				3			3			3		
	CO5 3					3				3		3		
3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low														
Category	Basic Sciences			Sciences	Sciences Program Core		Electives	Open Electives	Practical /	Project	Internships / Technical Skill	Soft Skills		

BEC18E03	BASICS OF ROBOTICS	3	0/0	0/0	3	
----------	--------------------	---	-----	-----	---	--

UNIT I INTRODUCTION

9 Hrs

Specifications of Robots- Classifications of robots – Work envelope – Flexible automation versus Robotic technology – Applications of Robots- robot kinematics and dynamics -Positions, Orientations and frames, Mappings: Changing descriptions from frame to frame, Operators: Translations, Rotations and Transformations - Transformation Arithmetic - D-H Representation - Forward and inverse Kinematics of Six Degree of Freedom Robot Arm – Robot Arm dynamics

UNIT II ROBOT DRIVES AND POWER TRANSMISSION SYSTEMS

9 Hrs

Robot drive mechanisms, hydraulic – electric – servomotor- stepper motor - pneumatic drives, Mechanical transmission method - Gear transmission, Belt drives, cables, Roller chains, Link - Rod systems - Rotary-to-Rotary motion conversion, Rotary-to-Linear motion conversion, Rack and Pinion drives, Lead screws, Ball Bearing screws.

UNIT III MANIPULATORS

9 Hrs

Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators.

UNIT IV ROBOT END EFFECTORS

9 Hrs

Classification of End effectors – Tools as end effectors. Drive system for grippers-Mechanical adhesive vacuum, magnetic-grippers. Hooks & Scoops. Gripper force analysis and gripper design. Active and passive grippers.

UNIT V PATHPLANNING & PROGRAMMING

9 Hrs

Trajectory planning and avoidance of obstacles, path planning, skew motion, joint integrated motion – straight line motion-Robot languages -. computer control and Robot software.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Text books:

- 1. Deb S. R. and Deb S., "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010.
- 2. John J.Craig, "Introduction to Robotics", Pearson, 2009. 3. Mikell P. Groover et. al., "Industrial Robots Technology, Programming and Applications", McGraw Hill, New York, 2008.

References:

- 1. Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering An Integrated Approach", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd., 2006.
- 2. Fu K S, Gonzalez R C, Lee C.S.G, "Robotics: Control, Sensing, Vision and Intelligence", McGraw Hill, 1987

Subject Code BEC18E04	:	Su	bject N	ame: C-	++ AND) DATA	STRUC	CTURE		T / L/ ETL	L	T/SL1	P/R	С			
			-		_	ming w	ith Linu	ıx, C		Ту	3	0/0	0/0	3			
			ogramn														
L: Lecture 7							: Projec	t R:R	esearch	C: Cre	dits						
T/L/ETL : T		_ab/En	nbedded	Theor	y and L	ab											
OBJECTIV To le		ffarant	object	oriente	d progre	mmino	concep	st e									
									nts of da	ıta							
						ata stru		c amou	into Of GC	ııa							
						oroblem											
							problen	ıs									
							echnolo;										
COURSE O	UTCC	MES	(COs)	: (3-5))												
The students				. ()													
CO1	Desc	ribe th	e use o	f contro	ol staten	nents of	perators	and de	velopme	ents of	func	ctions u	sing C+	+			
CO2	Anal	lyze th	e conce	epts of	constru	ictors, c	destruct	ors to o	create an	nd dest	roy	objects	and foc	us on t			
			neritanc								- 5	J					
CO3	Illus		ne opera	tions of	f stacks	, queue	and us	e of lin	ked list t	o impl	eme	nt inse	rtion and	deletion			
		trate th	•			•						nt inse	rtion and	deletio			
CO3		trate th	•			•			ked list t			nt inse	rtion and	deletion			
	Iden	trate th	ferent t	ree algo	orithms	to repre	esent no	des cor		y edge	es			deletion			
CO4	Iden	trate th tify dif ly sear	ferent t	ree algo	orithms ing des	to repro	esent no	in data	nnected b	y edge	es			deletion			
CO4	Identi Appl	trate th tify dif ly sear	ferent t	ree algo	orithms ing des	to repro	esent no	in data	nnected b	y edge	es olve						
CO4 CO5 Mapping of	Identi Appl	trate th tify dif ly sear e Outo	ferent t	ree algo	orithms ing desi	to repressign med	esent no chanism mes (PC	in data Os)	nnected b	by edge	es olve	e proble	ems				
CO4 CO5 Mapping of COs/POs	Identi Appl	trate the tify difference of the tify difference of the tify the t	comes v	ree algo	orithms ing desi	to repressign med	esent no chanism mes (PC	in data S) PO7	nnected la structu	res to s	es olve	e proble	PO11	PO12			
CO4 CO5 Mapping of COs/POs	Identi Appl	trate the tify diffusion transfer that the tify diffusion to the tify diffusion transfer that the tifusion transfe	comes v	ree algorial retrieve algorial	orithms ogram PO4 3	to represent to re	esent no chanism mes (PC PO6	in data Os) PO7	PO8	res to s	es olve	PO10	PO11 3	PO1 2			
CO4 CO5 Mapping of COs/POs CO1 CO2	Identi Appl	tify diffuse the last search of	comes v PO2 3 3	ree algorial retrieve algorial	orithms ogram PO4 3 3	to represent to re	chanism mes (PC) PO6 2 2	in data Os) PO7 1 2	PO8 2 1	res to s PO9 2 3	es olve	PO10 2 2 2	PO11 3 3	PO12 3 3			
CO4 CO5 Mapping of COs/PO: CO1 CO2 CO3	Identi Appl	trate the tify difference of the tify difference of the tify and the tify difference of the	comes v PO2 3 3 3	ree algorial sort vith Property PO3 3 3 3 3 3	orithms ing desi ogram PO4 3 3 3	to represent to re	esent no chanism mes (PC PO6 2 2 2	ndes con in data (1) (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	POS 2 1 1	PO9 2 3 3	es olve	PO10 2 2 3	PO11 3 3 3	PO12 3 3 3			
CO4 CO5 Mapping of COs/POs CO1 CO2 CO3 CO4	Ident Appi	trate the tify difference of the tify differe	comes v PO2 3 3 3 3	ree algorith Property PO3 3 3 3	orithms ing desi ogram PO4 3 3 3 3	to represent to re	esent no chanism mes (PC) PO6 2 2 2 2 2 2	in data (Ds) (PO7) 1 2 2 2	PO8 2 1 1 1	PO9 2 3 3 2 3 3	es olve	PO10 2 2 3 3 3	PO11 3 3 3 3 3	PO12 3 3 3 3 3 3			
CO4 CO5 Mapping of COs/POs CO1 CO2 CO3 CO4 CO5 CO5/PSO	Ident Appi	trate the tify difference of the tify differe	ching as PSO1	ree algorith Property PO3 3 3 3	orithms ing desi ogram PO4 3 3 3 3	to represent to re	esent no chanism mes (PC) PO6 2 2 2 2 2 2	in data (Ds) (PO7) 1 2 2 2	PO8 2 1 1 1 PSC 3	PO9 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	es olve	PO10 2 2 3 3 3	PO11 3 3 3 3 PSO-3	PO1: 3 3 3 3 3			
CO4 CO5 Mapping of COs/POs CO1 CO2 CO3 CO4 CO5	Ident Appi	trate the tify difference of the tify differe	comes v PO2 3 3 3 3 3	ree algorith Property PO3 3 3 3	orithms ing desi ogram PO4 3 3 3 3	to represent to re	esent no chanism mes (PC) PO6 2 2 2 2 2 2	in data (Ds) (PO7) 1 2 2 2	PO8 2 1 1 1 PSC 3 3	PO9 2 3 3 2 3 03	es olve	PO10 2 2 3 3 3	PO11 3 3 3 PSO- 3 3	PO12 3 3 3 3 3 3			
CO4 CO5 Mapping of COs/PO: CO1 CO2 CO3 CO4 CO5 COs / PSO CO1	Ident Appi	trate the tify difference of the tify differe	ching as PSO1	ree algorith Property PO3 3 3 3	orithms ing desi ogram PO4 3 3 3 3	to represent to re	esent no chanism mes (PC) PO6 2 2 2 2 2 2	in data (Ds) (PO7) 1 2 2 2	PO8 2 1 1 1 PSC 3 3 3	PO9 2 3 3 2 3 03	es olve	PO10 2 2 3 3 3	PO11 3 3 3 3 PSO-3	PO12 3 3 3 3 3 3			
CO4 CO5 Mapping of COs/POs CO1 CO2 CO3 CO4 CO5 COs / PSO CO1 CO2 CO3 CO4	Ident Appi	trate the tify difference of the tify differe	PO2 3 3 3 PSO1 3 3 3 3 3 3 3 3 3 3 3 3 3	ree algorith Property PO3 3 3 3	orithms ing desi ogram PO4 3 3 3 3	to represent to re	esent no chanism mes (PC) PO6 2 2 2 2 2 2	in data (Ds) (PO7) 1 2 2 2	PO8 2 1 1 1 PSC 3 3 3 3	PO9 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3	es olve	PO10 2 2 3 3 3	PO11 3 3 3 PSO 3 3 3 3 3 3 3	PO12 3 3 3 3 3 3			
CO4 CO5 Mapping of COs/POs CO1 CO2 CO3 CO4 CO5 CO5 / PSO CO1 CO2 CO3 CO4 CO5	Appi Cours s	trate the tify difference of the tify differe	referent to thing at the ching	ree algorial sort vith Property PO3 3 3 3 3 3 3 3 3 3	ogram PO4 3 3 3 3	to represent to re	esent no chanism mes (PC) PO6 2 2 2 2 2 2 2	pdes con in data (ps) PO7 1 2 2 2 2 2	PO8 2 1 1 1 1 PSC 3 3 3 3 3 3 3	PO9 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3	es olve	PO10 2 2 3 3 3	PO11 3 3 3 PSO 3 3 3 3 3	PO12 3 3 3 3 3 3			
CO4 CO5 Mapping of COs/POs CO1 CO2 CO3 CO4 CO5 COs / PSO CO1 CO2 CO3 CO4	Appi Cours s	trate the tify difference of the tify differe	referent to the ching at the ch	ree algorial sort vith Property PO3 3 3 3 3 3 3 3 3 3	ogram PO4 3 3 3 3	to represent to re	esent no chanism mes (PC) PO6 2 2 2 2 2 2	pdes con in data (ps) PO7 1 2 2 2 2 2	PO8 2 1 1 1 1 PSC 3 3 3 3 3 3 3	PO9 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3	es olve	PO10 2 2 3 3 3	PO11 3 3 3 PSO 3 3 3 3 3 3 3	PO12 3 3 3 3 3 3			
CO4 CO5 Mapping of COs/POs CO1 CO2 CO3 CO4 CO5 CO5 / PSO CO1 CO2 CO3 CO4 CO5	Appi Cours s	trate the tify difference of the tify differe	referent to the ching at the ch	ree algorial sort vith Property PO3 3 3 3 3 3 3 3 3 3	orithms ing desi ogram PO4 3 3 3 3 3 3 3	to represent to re	PO6 2 2 2 2 2 2 2 Medium	pdes con in data (ps) PO7 1 2 2 2 2 2	PO8 2 1 1 1 1 PSC 3 3 3 3 3 3 3	PO9 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3	es olve	PO10 2 3 3 2	PO11 3 3 3 PSO 3 3 3 3 3 3 3	PO12 3 3 3 3 3 3			

UNIT I INTRODUCTION TO OOPS

9 Hrs

Object Oriented Concepts – Basics of C++ Environment. Definition – Data Members – Function Members – Control Statements-Overloading Operators – Functions – Friends – Class derivation – Virtual Functions – Abstract Base Classes.

UNIT II CLASSES, INHERITANCE & TEMPLATES

10 Hrs

Constructor – Default constructors – Copy Constructors – Destructors – Static members – Constant Members – Free Store Operators- Multiple Inheritances- Exception Handling – Streams - Class Templates – Function Templates

UNIT III LINEARDATA STRUCTURES

9 Hrs

Stacks, Queues & Lists Implementation and Application Singly linked list – Doubly linked lists

UNIT IV NON-LINEAR DATA STRUCTURES

9 Hrs

Trees - Binary Trees - Binary Search Tree - Tree Traversals - AVL Trees

UNIT V SEARCHING AND SORTING

8 Hrs

Searching – Linear search-Binary Search. Sorting- Insertion sort, Bucket sort, Heap sort, Merge sort, Quick sort.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Balagurusamy. E, "*Object oriented programming with C++*", Tata McGraw-Hill publishing company limited, Addison Wesley
- 2. E. Horowitz, S. Sahani & S. Rajasekharan, "Fundamentals of data structure in C++", Computer science press.
- 3. Stanley B. Lippman, "The C++ Primer", Addison Wesley Publishers, 4th Edition, 2005.

Reference Books:

- 1. Weiss Mark Allen. "Data Structures and Algorithms Analysis in C", Pearson Education, 2/e, 1997
- 2. E. Horowitz, S. Sahani & S. Rajasekharan, "Computer Algorithms", Galgotia 1999.
- 3. Gary J. Bronson, "Object Oriented Program Development using C++", Thomson Learning, 4th Edition 2005.
- 4. Brett D. McLaughlin, Gary Pollice, David West Head "First Object-Oriented Analysis & Design", O'Reilly Media, 2007.
- 5. Gilberg & Forugan, "Data Structures: A Pseudo Code Approach using C++ ", Thomson Learning 1st Edition, 2002.
- 6. Gary J. Bronson, "Object oriented program development using Java", Thomson Learning, 2nd Revised Edition 2005.

ELECTIVES LIST 1- Communication Stream

B.Tech ECE 2018 Regulation(Revised)

Subject Code: BEC18E05	Subject Name: Antenna and Wave Propagation	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Electromagnetic waves and	Ту	3	0/0	0/0	3
	Transmission LInes					

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To study Antenna Parameters.
- To study Radiation Resistance, Antenna Efficiency Measurement.
- To study Antenna Arrays.
- To study different types Antennas
- To study Radio wave propagation.

COURSE OUTCOMES (COs): (3-5)

The students will be able to

CO1	Understand the knowledge about antenna basics.
CO2	Write about the radiation from a current element.
CO3	Analyze the antenna arrays.
CO4	Explain various types of antenna.
CO5	Describe various types of radio wave propagation.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	2	2	2	1	2	2
CO2	3	3	3	3	3	3	2	2	2	2	2	2
CO3	3	3	3	3	3	2	2	2	2	1	2	2
CO4	3	3	3	3	3	2	2	2	2	1	2	2
CO5	3	3	3	3	3	2	2	3	2	1	2	2

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2
CO2	3	3	2	2
CO3	3	3	2	2
CO4	3	3	2	2
CO5	3	3	2	2

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
					✓				

BEC18E05	ANTENNA AND WAVE PROPAGATION	3 0/0 0/0 3

UNIT I ANTENNA BASICS

9 Hrs

Antenna Parameters – Gain, Directivity, Effective Aperture Polarization, Beam width, Balun, Ground System, Top loading, monopole and Half wave dipole antenna, Short linear antenna, Beam solid angle, Antenna Temperature.

UNIT II RADIATION PRINCIPLE AND ANTENNA TERMINOLOGIES

9 Hrs

Principle of Radiation, pattern, Antenna Terminologies – Reciprocity Theorem, Friss Formula, Slot Antennas, SWR (Standing Wave Radiators)

UNIT III ANTENNA ARRAYS

9 Hrs

Arrays – Two Element Arrays – Uniform Linear Array – Broadside Array – End fire array – Principle of Pattern Multiplication – Binomial Arrays.

UNIT IV SPECIAL ANTENNA

9 Hrs

Dish Antenna – Helical Antenna, Biconical Antenna, Microstrip Patch Antenna, Turnstile Antenna, Yagi – uda antenna, Loop Antenna, Antenna Low and Medium Frequencies.

UNIT V WAVE PROPAGATION

9 Hrs

Wave Propagation - Surface Wave Propagation , Structure of the Ionosphere, Space Wave Propagation-Determination of Critical Frequencies - Maximum Usable Frequency - Effect of Earth's Magnetic Field - Fading - Super Refraction - Scatter Propagation.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Constantine A. Balanis, "Antenna theory analysis and design" JohnWiley, 2nd Edition 2007.
- 2. G.S.V. Raju, "Antenna wave propagation", pearson education, 2004.
- 3. R.E. Collins, "Antenna and Radio wave propagation".

Reference Books:

- 1. John D. Kraus, Ronald J Marhefka. "Antenna for all Applications" Tata McGraw Hill 3nd Edition, 2007.
- 2. A. R. Harish, M. Sachidanada, "Antenna and wave propagation", Oxford university press, 2007.
- 3. W. L. Stutzman and G.A. Thiele, "Antenna analysis and design", John willey, 2000.

Subject Co BEC18E0		Sys	stem	ame: T		T / L/ ETL	L	T/SLr	P/R	С				
			•	e: Com						Ту	3	0/0	0/0	3
L : Lecture							: Projec	t R:F	Researc	h C: Cro	edits			
T/L/ETL:		ab/Emt	bedded	Theory	and La	ıb								
OBJECTI		To cot	1	بطم مام	th.	+ -1 m		otion in	ductor	ita aan	.i.a.a. +1		1 hagia	a about tha
	•	_		nd oper					idustry,	its serv	ices ti	ieoretica	i basic	s about the
COURSE The Studer				(3-5)										
CO1				pply the	e funda	mental	s of tele	ecomm	unicatio	on syste	ms an	d associa	ated tec	hnologies.
CO2		Underst switching		d explai	in the r	easons	for swit	tching a	and the	relative	merit	s of the	various	modes of
CO3		Analyz		esign sy	stems	related	to traff	ic engir	neering					
CO4	, ,	Analyz	e the in	ternal d	esign a	nd oper	ation o	f telepl	none ne	tworks	with re	egard to	key sig	naling
		systems												. <u> </u>
CO5	;	Underst	tand an	d analy	ze the s	witchir	ng techr	niques ı	ised in	data ne	tworks	S.		
Mapping o	of Cours	e Outc	omes w	ith Pro	gram	Outcon	nes (PC) s)						
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 PC	O12
CO		3	3	1	3	3	1	1	1	1	1	1		1
CO		1	3	1	3	3	1	1	1	1	1	1		1
CO		3	3	3	3	1	1	1	1	1	1	1		1
CO		1	3	3	3	1	1	1	1	1	1	1		1
CO		1	3	3	3	3	1	1	1	1	1	1		2
COs / F	PSOs		PSO ₁	L		PS()2		P	SO3			PSO	14
CO	1		3			3				2			2	
CO	2		3			3				2			1	
CO			3			2				3			2	
CO			3			3				2			3	
CO	5		3			3				2			2	
H/M/L ind	licates S	trength	of Co	rrelatio	n 3-	High, 2	2- Medi	ium, 1-	Low				-	
Category	Basic Sciences		Engineering Sciences	Humanities and	Social Sciences	Program Core Program Electives				,	Practical / Project	Internships /	Technical Skill	Soft Skills
							✓							

BEC18E06 TELECOMMUNICATION SWITCHING SYSTEM 3 0/0 0/0 3

UNIT I Introduction

9 Hrs

Evolution of Telecommunications, Simple Telephone Communication, Manual switching system, major telecommunication Networks, Strowger Switching System, Crossbar Switching

UNIT II Switching Concepts

9 Hrs

SPC-its categorization, Enhanced Services, Two stage networks, Three stage networks, n-stage networks

Time multiplexed Space Switching, Time Multiplexed time switching, combination Switching, Three stage combination switching, n-stage combination switching.

UNIT III Traffic Engineering

9 Hrs

Network Traffic load and parameters, Grade of service and blocking probability, Modeling Switching Systems, Incoming Traffic and Service Time Characterization, Blocking Models and Loss Estimates, Delay systems.

UNIT IV Telephone Networks

9 Hrs

Subscriber Loop Systems, Switching Hierarchy and Routing, Transmission Plan, Transmission Systems, Numbering Plan, Charging Plan, Signaling Techniques, In channel signaling, common channel signaling, Cellular mobile telephony.

UNIT V Data Networks

9 Hrs

EPABX system – block diagram, working – Data transmission in PSTN, data rates in PSTNs – ISO – OSI reference model – Motivation for ISDN – Networks and protocol architecture, ISDN standards, broadband ISDN, voice data integration.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

TEXT BOOKS:

- 1. Thiagarajan Vishwanathan, "Telecommunication Switching Systems and Networks"; PHI Publications.
- 2. J. E. Flood, "Telecommunications Switching, Traffic and Networks", Pearson Education.
- 3. B. Forouzan "Data Communications and Networking", Pearson Education.

REFERENCE BOOKS:

- 1. John C. Bellamy, "Digital Telephony", Third Edition; Wiley Publications.
- 2. Andy Valder," Understanding Telecommunication Networks", IET press

Subject Code BEC18E07	:	Subject Name: REAL TIME OPERATING SYSTEMS T / L T/SLr P/R L/ ETL Prerequisite: Introduction to VLSI and Embedded Ty 3 0/0 0/0											
		Prerequisi System D		oductio	on to VI	SI and	Embe	dded	Ту	3	0/0	0/	0 3
L : Lecture T T/L/ETL : Th					rning F Lab	: Proj	ect R	Resear	ch C: C	redits		•	
OBJECTIVE	S:												
		f elements the operation											
		stand the in						Ţ					
COURSE OU			:										
The Student w		erstand the	fundam	entals	of embe	dded s	ystem						
CO2	Appl	y schedulir	ng techi	niques	for com	oleting	an ope	eration					
CO3		ember the f											
CO4		ement the d			•								
CO5	Dem	onstrate the	applic	ations	of softw	are dev	elopm	ent tool	s in rea	l time	system.		
Mapping of (Course	Outcomes	with P	rogran	n Outco	mes (I	POs)						
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	0 PO	11	PO12
CO1	1	1	1	1	1	3	1	1	1	1	1	1	2
CO2	2	3	3	3	3	2	1	1	2	3	2	2	2
CO3	1	3	3	2	3	1	1	1	3	3	1	1	2
CO4	1	3	3	3	3	2	1	1	2	2	1	1	2
CO5	2	2	3	3	3	1	1	1	2	2	1	1	2
COs / PSOs		PSO1			PSO2			PS	О3]	PSO ₄	ļ
CO1		1			1				2			2	
CO2		1			2			3	3			1	
CO3		1			2			2	2			1	
CO4		1			2			2	3			2	
CO5		1			2			2	2			2	
3/2/1 indicate	s Stren	gth of Cor	relatio	n 3-	High, 2	Medi	um, 1-	Low		I		•	
Category	Basic Sciences	Engineering Sciences	Humanities and	Social Sciences Program Core Program Electives				Open Electives		Practical / Project	Internships /	Technical Skill	Soft Skills
						✓							

BEC18E07	REAL TIME OPERATING SYSTEMS	3	0/0	0/0	3	

UNIT I EMBEDDED SYSTEM FUNDAMENTALS

9 Hrs

Introduction, Characteristics of embedded systems and challenges in system design —Design issues in embedded real-time systems, critical performance issues in embedded real-time systems.

UNIT II SURVEY OF SOFTWARE ARCHITECTURES

9 Hrs

Round –robin, Round-robin with interrupts, queues. Function- scheduling architecture, Real time operating system architecture, Scheduling architecture.

UNIT III ELEMENTS OF REAL TIME OPERATING SYSTEMS

9 Hrs

Tasks & Task states, Tasks & data, Semaphores & shares data, Message Queues, Mailboxes and Pipes, Timer functions, Events, Memory management and Interrupt Routines in an RTOS environment.

UNIT -IV BASIC DESIGN USING REAL-TIME OPERATING SYSTEMS

9 Hrs

Principles, encapsulating semaphores & queues, hard real-time scheduling considerations, saving memory space, saving power.

UNIT V EMBEDDED TOOLS

9 Hrs

Embedded software development tools- host and target machines, linker/locators for embedded software, getting embedded software into the target system. Debugging techniques- testing on host system, instruction set simulators, the assert, macro using laboratory tools.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Text books:

- 1. Wayne Wolf, "Computers as Components- Principles of Embedded Computing Systems Design", Academic press, 2001.
- 2. David E. Simon, "An Embedded Software Primer", Pearson education, 1999.

References:

- 1. Arnold S. Berger, "Embedded Systems Design- an Introduction to Processes, Tools & Techniques", CMP books, 2002.
- 2. Jean J. Labrosse, "Embedded Systems Building Blocks", CMP books, 2002.
- 3. Michael Barr, "Programming Embedded Systems in C andC++", O'Reilly, 1999.

Subject Code: BEC18E08	Subject Name: Audio Signal Processing	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Signals and Systems, Digital Signal Processing	T	3	0/0	0/0	3

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits$

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- To study the basic concepts of speech and audio.
- To study the analysis of various M-band filter banks for audio coding To learn various transform coders for audio coding.

To study the speech processing methods in time and frequency domain.

COURSE OUTCOMES (COs): (3-5)

The	Students	xx/i11 1	ne ah	le to
1110	OUNCHIS	willi	של או	וכו בו

CO1	Determine the natures of speech generation and modeling
CO2	Analyze various transforms and m – band filter bank for audio coding.
CO3	Speculate different audio coding and transform coders.
CO4	Estimate various speech parameters with suitable techniques.
CO5	Apply linear prediction coding tool to analyze speech.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	2	3	3	3	3	2	3	3	3	
CO2	3	3	3	3	3	3	3	3	2	3	3	3	
CO3	3	3	3	2	3	3	3	3	2	3	3	3	
CO4	3	3	3	3	3	3	3	3	2	3	3	3	
CO5	3	3	3	3	3	3	3	3	2	3	3	3	
COc / DSOc		DCO1			DSO2 I			DSC	13		DSO4		

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3
CO2	3	3	3	3
CO3	2	1	3	3
CO4	3	3	2	3
CO5	3	2	3	3

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

BEC18E08	Audio Signal Processing	3	0/0	0/0	3	
----------	-------------------------	---	-----	-----	---	--

UNIT I MECHANICS OF SPEECH AND AUDIO

9 Hrs

Introduction - Review Of Signal Processing Theory-Speech production mechanism — Nature of Speech signal — Discrete time modeling of Speech production — Classification of Speech sounds — Phones — Phonemes — Phonetic and Phonemic alphabets — Articulatory features. Absolute Threshold of Hearing - Critical Bands- Simultaneous Masking, Masking-Asymmetry, and the Spread of Masking- Non simultaneous Masking - Perceptual Entropy - Basic measuring philosophy -Subjective versus objective perceptual testing - The perceptual audio quality measure (PAQM) - Cognitive effects in judging audio quality.

UNIT II TIME-FREQUENCY ANALYSIS: FILTER BANKS AND TRANSFORMS 9 Hrs

Introduction -Analysis-Synthesis Framework for M-band Filter Banks- Filter Banks for Audio Coding: Design Considerations - Quadrature Mirror and Conjugate Quadrature Filters- Tree- Structured QMF and CQF M-band Banks - Cosine Modulated "Pseudo QMF" M-band Banks - Cosine Modulated Perfect Reconstruction (PR) M-band Banks and the Modified Discrete Cosine Transform (MDCT) - Discrete Fourier and Discrete Cosine Transform - Pre-echo Distortion- Preecho Control Strategies.

UNIT III AUDIO CODING AND TRANSFORM CODERS

9 Hrs

Lossless Audio Coding-Lossy Audio Coding- ISO-MPEG-1A,2A,2A Advanced, 4Audio Coding - Optimum Coding in the Frequency Domain - Perceptual Transform Coder -Brandenburg-Johnston Hybrid Coder - CNET Coders - Adaptive Spectral Entropy Coding -Differential Perceptual Audio Coder - DFT Noise Substitution -DCT with Vector Quantization -MDCT with Vector Quantization.

UNIT IV TIME AND FREQUENCY METHODS FOR SPEECH PROCESSING 9 Hrs

Time domain parameters of Speech signal – Methods for extracting the parameters: Energy, Average Magnitude – Zero crossing Rate – Silence Discrimination using ZCR and energy Short Time Fourier analysis – Formant extraction – Pitch Extraction using time and frequency domain methods HOMOMORPHIC SPEECH ANALYSIS: Cepstral analysis of Speech – Formant and Pitch Estimation – Homomorphic Vocoders.

UNIT V LINEAR PREDICTIVE ANALYSIS OF SPEECH

9 Hrs

Formulation of Linear Prediction problem in Time Domain – Basic Principle – Auto correlation method – Covariance method – Solution of LPC equations – Cholesky method – Durbin's Recursive algorithm – lattice formation and solutions – Comparison of different methods – Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

TEXTBOOKS:

- 1. Digital Audio Signal Processing, Second Edition, UdoZölzer, A John Wiley& sons Ltd Publications 2. Applications of Digital Signal Processing to Audio And Acoustics Mark Kahrs, Karlheinz Brandenburg, Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow. **REFERENCE:**
- 1. Digital Processing of Speech signals L. R. Rabiner and R.W. Schaffer Prentice Hall 1978

ELECTIVE II - Electronics Stream

Subject Co BEC18E09				e: INTELL TATION	IGENT		T / L/ ETL	L	T	SLr	P/R		С	
		Prerec	uisite:	None			Ту	3		0/0	0/0	0	3	
L : Lecture	T : Tuto	orial S	Lr : Sup	ervised Lea	arning	P : Pro	ject R:R	esearch	n C: C	redits		<u> </u>		
		Lab/Emb	edded '	Theory and	Lab									
OBJECTI		4 1 .				1 4 - 1 -	-1/-14			. 41	•		.1: (:	
•				ne use of va , standards										
•				opportunitie										
	PLC.													
COURSE			COs):	(3-5)										
The student					1									
CO1				epts of tran			C : 1			1	1			
CO2			derstand the basic design techniques of signal generators and analyzers. n knowledge about Instrumentation standard protocols.											
CO				boratory in						no fi	unction a	anarators	and analyz	
CO4	•		s patteri		isti uille.	IIIS IIK	e camoue i	ay OSCI	nosco	pe, n	inction g	cherators a	ana anaryzo	
COS	5			skills in de	esigning	of co	mputer co	ntrolled	l instri	ımeni	ation.			
				th Prograi					- 1115111	************				
COs/POs	PO1	PO2	PO3		PO5	PO6		PO8	PO	9	PO10	PO11	PO12	
CO1	3	1	1	2	2	1	1	2	3		3	3	3	
CO2	3	3	3	3	3	3	3	2	2		3	2	2	
CO3	3	1	1	2	3	3	2	1	3		3	3	3	
CO4	3	3	3	2	2	2	3	1	2		3	3	3	
CO5	3	3	3	2	2	2	3	1	2		3	3	3	
COs / P	SOs		PSO1			PSC)2		PSO3			PSO4		
CO1	-		3			1			3			3		
CO2	2,		3			3			3			3		
CO3	}		3			2			3			3		
CO4			3			3			2		3			
COS			3			3			3			3		
3/2/1 indica	ates Str	ength of	Corre	lation 3-	High, 2	2- Med	lium, 1-Lo)W						
Category	Basic		Engineering Sciences	Humanities and Social Sciences		Program Core	Program Electives	Open	Electives		Practical / Project	Internships / Technical Skill	Soft Skills	
						_								

BEC18E09 INTELLIGENT INSTRUMENTATION 3 0/0 0/0 3

UNIT I TRANSDUCERS

9 Hrs

Transducer definition, classification, and performance characteristics. Potentiometer and its types, loading effect, sensitivity, piezo-resistive, equivalent circuits, charge and voltage sensitivity. Measurements, Instrumentation, Errors in Measurements, Calibration and Standard.

UNIT II SIGNAL GENERATOR AND SIGNAL ANALYZERS

9 Hrs

A.F. Generator, Pulse Generator, AM / FM Signal Generator, Function Generator, Sweep Frequency Generator, Wave Analyzers, Spectrum Analyzers, Logic Analyzer, Distortion Analyzers, Network Analyzer.

UNIT III INSTRUMENTATION STANDARD PROTOCOLS

9 Hrs

Definition of protocol, HART Protocol: Introduction, frame structure, programming, implementation examples, benefits, advantages and limitation. Foundation Field bus H1: Introduction, frame structure, programming, implementation examples, benefits, advantages and limitation. Comparison of HART, Foundation Fieldbus, Devicenet, Profibus, Controlnet, Industrial Ethernet.

UNIT IV DATA DISPLAY AND RECORDING SYSTEM

9 Hrs

CRO, Single Beam, Dual Trace, Double Beam CRO, Digital Storage and Analog Storage Oscilloscope, Sampling Oscilloscope, Power Scope, Curve Tracer, Analog, Digital Recorders and Printers – Case Study on Lissajous Pattern.

UNIT V COMPUTER CONTROLLED TEST SYSTEM

9 Hrs

Programmable logic controllers (PLC) Introduction, architecture, definition of discrete state process control, PLC Vs PC, PLC Vs DCS, relay diagram, ladder diagram, ladder diagram examples, relay sequencers, timers/counters, high speed counter, PLC design, study of at least one industrial PLC.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Rangan C.S. "Instrumentation Devices and Systems", Tata McGraw Hill, 1998.
- 2. Sandeep Redkar, "Foundation Fieldbus control system", Rockwell Automation, 2010,
- 3. A. K. Shawney "Electronics and Electrical Instrumentation", Tata McGraw Hill, 1975.

Reference Books:

- 1. Bouwels A.J., "Digital Instrumentation", McGraw Hill, 1986.
- 2. Barney .C, "Intelligent Instrumentation", Prentice Hall of India, 1985.
- 3. Oliver and Cage, "Electronic Measurements and Instruments and Instrumentation", McGraw Hill, 1975.
- 4. Deobelin, "Measurements Systems", McGraw Hill, 1990.
 - 5. Cooper, "Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 1988.

Subject Code:		C.,	higgt N	Jamas	dvone	od Mio	roproc	00001	,	T /	L	T/SLr	P/R	С	
Subject Code:		Su	nject P	vame: A	Auvanc	ea wiic	roproc	essor	8	L/	L	1/SLI	F/K		
BEC18E10										ETL					
		Pre	erequisi	te: Mic	roproce	essor an	d Micro	ocontr	ollers	Ту	3	0/0	0/0	3	
L: Lecture T:							Project	R : F	Research (C: Credi	ts				
T/L/ETL: The		b/Emb	edded	Theory	and La	.b									
OBJECTIVES															
			-			_	•		Intel fami	•	•		rs.		
		•	•	•	•	_			S and BIO						
To intr	oduce	the are	chitectu	ire prog	grammii	ng and i	interfac	ing of	16 bit m	crocont	rolle	rs.			
To intr	oduce	the co	ncepts	and arc	hitectui	e of RI	SC prod	cessor							
COURSE OU	TCOM	AES (COs):	(3-5)											
The Students wi															
CO1	Expla	ain the	the generalized architecture of advanced microprocessor												
CO2	Deve	lop alg	algorithm/ program of advanced microprocessor or a particular task.												
CO3	Appro	eciate	the mic	croproc	essor-b	ased sys	stem de	sign							
CO4	Analy	yze the	е МОТ	OROLA	A MC 6	8000 fa	mily								
CO5	Desci	ribe ab	out the	variou	s RISC	process	sors								
Mapping of C	ourse (Outco	mes w	ith Pro	gram (Outcom	es (PO	s)							
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO'	7 PO8	PO9	P	010	PO11	PO12	
CO1		3	3	3	2	2	1	2	1	3		3	1	3	
CO2		3	3	3	3	2	2	1	2	3		3	3	3	
CO3		3	3	2	2	1	1	2	2	1		3	2	3	
CO4		3	3	3	3	1	1	3	1	2		2	3	2	
CO5	CO5 3 3 3						1	1	1	3		3	1	1	
COs / PSC)s		PS()1		PS	SO2		P	SO3			PSO	4	
CO1			3			2			1				1		
CO2			3			3			1			1			
CO3			3			2			2			1			
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		·		_			_	_			

3/2/1 in	dicates S	trangth of	Carrelation	3. High 2.	Medium.1-Low
3/4/1 111	idicates 5	ազոջալ օւ Վ	Correlation	J- 111211. 4.	· Mieainiii 1-170 w

CO4

CO5

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
					✓				

BEC18E10	ADVANCED MICROPROCESSORS	3	0/0	0/0	3

UNIT I THE INTEL X86 FAMILY

9 Hrs

The Intel X86 Family Architecture, 32 bit Processor Evolution Systems Connections and Timing, Instruction and Data Formats, Instruction set of X86 Processors, Addressing Modes.

UNIT II INTEL X86 ASSEMBLY LANGUAGE PROGR

9 Hrs

Implementation of Strings, Procedures, Macros, BIOS and DOS Services using X86 Assembly Language Programming, Memory and I/O Interfacing, Analog Interfacing and Industrial Control.

UNIT III SYSTEM DEVELOPMENT

9 Hrs

Microprocessors Based System Design, TMS 320 Series DSP Based Signal Processing, Microcontroller 8096, architecture, addressing mode and system design.

UNIT IV THE MOTOROLA MC 68000 FAMILY

9 Hrs

The MC 68000 Architecture, CPU Registrars, Data Formats, Addressing Modes, Instruction Set and Assembler Directors, Memory Management Instruction and Data, Caches, Exception Processing.

UNIT V RISC PROCESSORS

9 Hrs

RISC vs CISC, RISC Properties and Evaluation, Advanced RISC Microprocessors, DEC ALPHA, The Power PC family. The SUN SPARC Family, the MIPS RX 100 Family, the Intel 860 Family. The Motorola M88000 Family, HP Precision Architecture.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

TEXT BOOKS:

- 1. B.B. Bery, "The Intel Microprocessors 8086 / 8088, 80186 / 80188, 80286, 80386, 80486, PENTIUM, and PENTIUM Processors", Prentice Hall, 1997.
- 2. K Udayakumar, B.S. Uma Shankar, "Advanced Microprocessors and IBM PC Assembly Language Programming", Tata McGraw Hill, 1996

- 1. Daniel Tabak, "Advanced Microprocessors", McGraw Hill, 1995.
- 2. Douglas V. Hall, "Microprocessors and Interfacing Programming Hardware", McGraw Hill, 1992.
- 3. W.A. Tribel & A. Singh, "The 68000 and 68020 Microprocessors Architecture, Software and Interfacing Techniques", Prentice hall of India, 1991
- 4. Rifiquzzaman, "Microprocessors Theory and Applications: Intel and MotorolaPrentice Hall, 1992.
- 5. Kenneth J. Ayala, "The 8051 Microcontroller, Architecture, Programming and Application", Penram International Publishing (India), 1996.6. John Peatman, "Design with Microcontrollers", McGraw Hill International, 1988

Subject C BEC18E1		Sul	oject N	lame: N	ANO 1	ELECT	ΓRONI	CS			/ L/ TL	L	T/SLr	P/R	
		Pre	requisi	te: Engi	neering	g Physic	cs I & I	Ι		T		3	0/0	0/	0
L : Lecture	e T : Tutoria	al SL	r : Sup	ervised	Learnii	ng P:l	Project	R:	Researc	h C:	: Cred	its		ı	
T/L/ETL:	Theory/La	b/Embe	edded	Γheory a	nd Lat)									
OBJECT	IVES:														
•	To learn	and un	dersta	nd basi	c conc	epts of	f Nano	elec	tronic	.					
•	To know	the tee	chniqu	es of fa	bricat	ion and	d meas	uren	nent.						
•	To gain k	nowle	dge al	out Na	nostru	cture c	levices	and	logic	devi	ices.				
COURSE	OUTCOM	IES (C	(Os):	(3-5)											
	nts will be a	able to													
CO	01	Intro	duce tl	ne conc	epts in	nanop	article	S							
CC)2	Demo	emonstrate fabrication and characterization techniques												
CC)3	Desci	escribe the properties of Nano materials												
CC) 4	Categ	Categorize the Nano structure devices												
CC) 5	Understand and explain the principle and application of Nano devices.													
Mapping	of Course	Outcor	nes wi	th Prog	ram O	utcome	es (POs	s)							
COs/	/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PC	8	PO9	PO10	PO	11	PO12
CO)1	3	3	3	3	2	2	-	_		_	_	_		2
CO)2	3	3	3	3	3	2	-	-		-	-	-		2
CO)3	3	3	3	3	2	2	-	-		-	-	-		2
CC	04	3	3	3	3	3	2	-	-		-	-	-		2
CO		3	3	3	3	3	2	-	-		-	-	-		2
COs /	PSOs		PSO	1		PS()2			PS()3]	PSO4	1
CC			3			3				2				3	
CC			2			3				3				3	
CC											3				
CC										3					
<u>C(</u>			1			2				3				3	
3/2/1 indic	cates Stren	gth of	Corre	ation	3- Hig	h, 2- M	Iedium	,1-L	ow	ı				1	
Category	g			Program Core Program Program Electives			Open Electives Practical / Project		Project	Internships / Technical Skill		Soft Skills			

BEC18E11	NANO ELECTRONICS	3 0/0 0/0 3
----------	------------------	-------------

UNIT I INTRODUCTION TO NANOELECTRONICS

9 Hrs

Microelectronics towards biomolecule electronics-Particles and waves- Wave-particle duality- Wave mechanics- Schrödinger wave equation- Wave mechanics of particles: — Atoms and atomic orbitals-Materials for nanoelectronics- Semiconductors- Crystal lattices: Bonding in crystals- Electron energy bands- Semiconductor heterostructures- Lattice-matched and pseudomorphic heterostructures- Inorganic-organic heterostructures- Carbon nanomaterials: nanotubes and fullerenes

UNIT II FABRICATION AND MEASUREMENT TECHNIQUES

9 Hrs

Growth, fabrication, and measurement techniques for nanostructures- Bulk crystal and heterostructure growth- Nanolithography, etching, and other means for fabrication of nanostructures and nanodevices- Techniques for characterization of nanostructures- Spontaneous formation and ordering of nanostructures- Clusters and nanocrystals- Methods of nanotube growth- Chemical and biological methods for nanoscale fabrication- Fabrication of nano-electromechanical systems

UNIT III PROPERTIES

9 Hrs

Dielectrics-Ferroelectrics-Electronic Properties and Quantum Effects-Magneto electronics – Magnetism and Magneto transport in Layered Structures-Organic Molecules – Electronic Structures, Properties, and Reactions-Neurons – The Molecular Basis of their Electrical Excitability-Circuit and System Design-Analysis by Diffraction and Fluorescence Methods-Scanning Probe Techniques

UNIT IV NANO STRUCTURE DEVICES

9 Hrs

Electron transport in semiconductors and nanostructures- Time and length scales of the electrons in solids-Statistics of the electrons in solids and nanostructures- Density of states of electrons in nanostructures- Electron transport in nanostructures- Electrons in traditional low-dimensional structures- Electrons in quantum wells- Electrons in quantum dots- Nanostructure devices- Resonant-tunneling diodes- Field-effect transistors- Single-electron-transfer devices- Potential-effect transistors- Light-emitting diodes and lasers- Nano-electromechanical system devices- Quantum-dot cellular automata

UNIT V LOGIC DEVICES AND APPLICATIONS

9 Hrs

Logic Devices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quantum Transport Devices Based on Resonant Tunneling-Single-Electron Devices for Logic Applications-Superconductor Digital Electronics-Quantum Computing Using Superconductors-Carbon Nanotubes for Data Processing-Molecular Electronics

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Text Books:

- Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge University Press 2011
- 2. Supriyo Datta, "Lessons from Nanoelectronics: A New Perspective on Transport", World Scientific 2012
- 3. George W. Hanson, "Fundamentals of Nanoelectronics", Pearson 2009

- 1. Korkin, Anatoli; Rosei, Federico (Eds.), "Nanoelectronics and Photonics", Springer 2008
- 2. Mircea Dragoman, Daniela Dragoman, "Nanoelectronics: principles and devices", CRC Press 2006
- 3. Karl Goser, Peter Glösekötter, Jan Dienstuhl, "Nanoelectronics and Nano systems: From Transistors to Molecular and Quantum Devices", Springer 2004
- 4. W. R. Fahrner, Nanotechnology and Nan electronics: Materials, Devices, Measurement Techniques(Springer Verlag Berlin Heidelberg 2005)
- 5. Mark A. Reed, TakheeLee, "Molecular nanoelectronics", American Scientific Publishers 2003
- 6. 6.Jaap Hoekstra, "Introduction to Nanoelectronics Single-Electron Circuit Design", Pan Stanford Publishing 2010

Subject Co BEC18E12	de:	Subject N	Name: C	Compu	ter Arc	hitectu	re		T / L/ ETL	L	T/SLr	P/R	С		
		Prerequis	ite: Digi	tal Ele	ctronics				Ту	3	0/0	0/0) 3		
L : Lecture	T : Tutori					: Projec	et R : I	Research	C: Cre	dits					
T/L/ETL: 7						. 1 10,00		toscar on	C. C.C.	arts.					
OBJECTIV				<i>J</i>											
	• To ea	nable the st	adents to	famil	iarize ab	out har	dware	design ba	asic str	uctur	e and be	ehavior	of the		
	vario	us function	al modu	les of t	the comp	outer.		-							
COURSE (OUTCON	IES (COs)	: (3-5))											
The student															
CO1	Unders	tand the ba	sic opera	ation o	f a comp	outer sy	stem								
CO2		strate the a						omputer s	ystem						
CO3		nember the working of control unit in a pipelined dataflow													
CO4		et the princ													
CO5	-	Classify different types of memory and I/O based techniques in a computer system.													
Mapping of					-				1						
COs/POs	s PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	010 P	011	PO12		
CO1	1	. 1	2	2	1	2	1	1	1	2	2	1	2		
CO2	1	. 2	2	2	1	1	1	1	1	_	2	1	2		
CO3	1		1	2	1	1	1	3	2	_	2	3	1		
CO4	1		3	3	1	2	2	2	2	_	3	2	1		
CO _T / PS(1	-	1	1	1 DC(1	1	1 DC	2		3	2	2		
COs / PSO CO1	JS	PSO1 1			PSC 2)		PS:				PSO -2	4		
CO2		1			$\frac{2}{2}$			2				$\frac{2}{2}$			
CO3		1			2							1			
CO4		1 2 3										1			
		1 2						-							
CO5		1										2			
	tes Stren	1 gth of Cor	relation	3- H	2	Mediu	m, 1-L	2				2			
CO5	Basic Sciences	Engineering Sciences	Humanities and Social	Sciences	2	Program Program		2		Project	Internships /	Technical Skill	Soft Skills		

BEC18E12	COMPUTER ARCHITECTURE	3	0/0	0/0	3	

UNIT I OVERVIEW & INSTRUCTIONS

9 Hrs

Eight ideas – Components of a computer system – Technology – Performance – Power wall – Uniprocessors to multiprocessors; Instructions – operations and operands – representing instructions – Logical operations – control operations – Addressing and addressing modes.

UNIT II ARITHMETIC OPERATIONS

9 Hrs

ALU - Addition and subtraction - Multiplication - Division - Floating Point operations - Sub word parallelism.

UNIT III PROCESSOR AND CONTROL UNIT

9 Hrs

Basic MIPS implementation – Building Datapath – Control Implementation scheme – Pipelining – Pipelined Datapath and control – Handling Data hazards & Control hazards – Exceptions.

UNIT IV PARALLELISM

9 Hrs

Instruction-level-parallelism – Parallel processing challenges – Flynn's classification – Hardware multithreading – Multicore processors

UNIT V MEMORY AND I/O SYSTEMS

9 Hrs

Memory hierarchy - Memory technologies – Cache basics – Measuring and improving cache performance - Virtual memory, TLBs - Input/output system, programmed I/O, DMA and interrupts, I/O processors.

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

TEXT BOOK:

1. David A. Patterson and John L. Hennessey, "Computer organization and design", Morgan Kauffman / Elsevier, Fifth edition, 2014.

- 1. V.CarlHamacher, Zvonko G. Varanesic and Safat G. Zaky, "Computer Organization", VI th edition, Mc Graw-Hill Inc, 2012.
- 2. William Stallings "Computer Organization and Architecture", Seventh Edition, Pearson Education, 2006.
- 3. Vincent P. Heuring, Harry F. Jordan, "Computer System Architecture", Second Edition, Pearson Education, 2005.
- 4. Govindarajalu, "Computer Architecture and Organization, Design Principles and Applications", first edition, Tata McGraw Hill, New Delhi, 2005.
- 5. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata Mc Graw Hill, 1998.

ELECTIVE II – Communication Stream

Subject C BEC18E1			bject N	Name: N RKS	EXT (GENEI	RATIO	N II	•		Γ / L / E TL	L	T/SLr	P/R	С
				ite: Com	puter (Commu	nication	1			Гу	3	0/0	0/0) 3
L : Lecture	e T : Tu	torial S	SLr : S	upervise	d Learn	ning P	: Projec	t R	: Re	search	C: Cre	edits		I	l .
T/L/ETL:	Theory	/Lab/Em	bedde	d Theory	and L	ab									
OBJECT															
		a compl			_	f IPV6	archite	ectui	e						
		the key					_								
• To	o know	the tech	nnique	s for av	oiding	netwo	rk con	gest	ion						
COURSE				: (3-5)											
The Stude															
CO				he key t											
CO2	2	Analyz	alyze the transmission and security of IPV6 protocol												
CO3	3	Interpr	rpret the advantages of IPV6 over other networks												
CO	ı	Develo	velop a wireless network architecture												
COS	5	Apply	Apply their ideas for controlling and avoiding network congestion												
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PC	7	PO8	PO9	PO1	0 PO1	11	PO12
CO	[1	1	3	3	3	3	1		1	1	1	1		2
CO2		1	1	1	3	1	3	1		1	1	1	1		1
CO3		1	3	1	1	3	1	2		1	3	1	1		1
CO4		1	1	1	1	1	3	1		1	1	2	1		1
COs / P		1	PSO1	1	3	PS(1	1		1	$\frac{1}{\mathbf{O3}}$	3	1	PSO4	1
COS/P			1	L			14	+		rs	1		<u>, </u>	1	
CO2			2			3		\dashv			3			1	
CO3			1			3		\dashv			<u></u> 1			1	
CO ₄			2			1					3			1	
COS	5		1			3					1			1	
H/M/L in	dicates	Strengtl	of Co	orrelatio	n H-	High,	M- Me	diu	n, L	-Low					
Category	Basic Sciences	Engineering Sciences Humanities and Social Sciences		Sciences	Program Core		Electives		Open Electives Practical / Project		Project	Internships / Technical Skill		Soft Skills	
							✓								

UNIT I IP V6 ADRESSING

9 Hrs

Next Generation Networks-Overview-IP V6 Specification-Addressing Architecture-Address Allocation Management-Unicast Address Allocation-Global Unicast Address Format-Testing Address Allocation-Multicast Addressing-Reversed IP V6 Subnet any cast addresses.

UNIT II IP V6 TRANSMISSION AND SECURITY

9Hrs

Internet Control Message Protocol-Hop-by-Hop Options-Header Compression-Packet Tunneling-Domain Name System-Transition Mechanisms-Routing-Renumbering-IP Privacy-Security Architecture for the Internet Protocol-IP Authentication Header-IP Encapsulation Security Payload-IP Authentication using Keyed MD5-The ESP DES-CBC Transform.

UNIT III IP V6 OVER DIFFERENT NETWORKS

9 Hrs

IP V6 over Ethernet Networks-IP V6 over FDDI Networks-IP V6 over Token ring Networks- IP V6 over ARCnet Networks- IP V6 over PPP- IP V6 over NBMA Networks- IP V6 over ATM Networks.

UNIT IV WIRELESS IP NETWORK ARCHITECTURES

9 Hrs

3GPP Packet Data Networks, Network architecture, Protocol Reference Model, Packet Data Protocols, Bearers, and connections for Packet Services, Packet Data Protocol (PDP) Context, Steps for a Mobile to Access 3GPP Packet-Switched Services, User Packet Routing and Transport, Configuring PDP Addresses on Mobile Stations, GPRS Attach Procedure, Access to MWIF Networks, Session Management.

UNIT V NETWORK CONGESTION CONTROL AND AVOIDANCE

9 Hrs

Introduction-Queue Management-Scheduling-Types of flows-Queue Management Techniques: RED-FRED-SRED-PI Controller-REM- E-RED Scheduling Algorithms: Fair Queuing-CFS.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

TEXT BOOKS:

- 1. RFC 2373, -IP V6 Addressing Architecture, RFC 1881-IPv6 Address Allocation Management, (Unit I)
- 2. RFC 2463-Internet Control Message Protocol, RFC 2402-IP Authentication Header (Unit II)
- 3. RFC 2497-Transmission of IPv6 Packets over ARC net Networks, RFC-2492-IPv6 over ATM Networks (Unit III)

- 4. http://www.faqs.org/rfcs/(Unit I, II, III)
- 5. JYH-CHENG CHEN, TAO ZHANG, "IP-Based Next Generation Wireless Networks (Systems, Architectures and Protocols)", by John Wiley & Sons, Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 2004. (Unit IV)
- 6. http://www.icir.org/floyd/red.html (Unit V)

Subject Code BEC18E14	e:			Name: 1 PLICAT			TWOI	RKS A		T / L/ ETL	L	T/SLr	P/R	C
		Pr	erequis	site: Noi	ne				'	Ту	3	0/0	0/	0 3
L : Lecture T				pervise			Projec	t R:R	Research	n C: Cro	edits			<u> </u>
T/L/ETL: The	•	/Emb	oedded	Theory	and La	ıb								
OBJECTIVI • 7	E : Γο study	the v	arious	neural n	etwork	algorit	thms an	ıd its ap	plicatio	on in pa	ittern re	cognitio	on.	
COURSE O		MES (COs):												
CO1			ribe the basic concepts of artificial neural networks.											
CO2	Exp	ain about BPN and BAM												
CO3			ement the concept of simulated annealing and CPN											
CO4	•	rpret the concepts of SOM and ART.												
CO5	Trai	in BPN algorithm.												
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12
CO1		3	2	2	2	1	1	1	1	1	3	2		3
CO2		3 3 2			2	1	1	1	1	2	3	1		2
CO3		3	3	3	3	3	2	2	2	3	2	3		2
CO4		3	2	3	3	2	1	1	1	1	3	2		2
CO5		3	3	3	3	2	1	2	1	1	1	1		1
COs / PSC)s		PSO1			PSO	2		PS	O3		I	PSO ²	1
CO1			1			2				2			3	
CO2			1			2				3			1	
CO3			3			2			,	3			1	
CO4			1			1				3			2	
CO5			1			2				1			3	
3/2/1 indicate	es Stren	gth o	f Corr	elation	3- H	igh, 2-	Mediu	n, 1-L	ow					
		ь	a	s 1		ore						_		
Category	Basic Sciences	Engineering Sciences Humanities and Social				Sciences ogram Coi Program Electives		tives	Open Electives	Practical /	Project	nternships Technical	Skill	Soft Skills
Cate	Ba Scie	Engin Scie Huma				Sciences Program Core Program Electives Open			O _j Elec	Prac	Prc	Internships Technical	S	Soft
							✓							

BEC18E14	NEURAL NETWORKS AND ITS APPLICATIONS	3 0/0 0/0 3

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

9 Hrs

Neuro – Physiology – General Processing Element – ADALINE – LMS Learning Rule – MADALINE – Perception Networks

UNIT II BPN AND BAM 9 Hrs

Back Propagation Network – Updating of Output and Hidden Layer Weights – Application of BPN – Associative Memory – Bi-Directional Associative Memory – Hopfield Memory – Traveling Sales Man Problem

UNIT III SIMULATED ANNEALING AND CPN

9 Hrs

Annealing, Boltzmann Machine – Learning – Application – Counter Propagation Network – Architecture – Training – Application.

UNIT IV SOM AND ART

9 Hrs

Self-Organizing Map – Learning Algorithm – Feature Map Classifier – Applications – Architecture of Adaptive Resonance Theory – Pattern Matching in ART Network. Neocognitron: Architecture of Neocognitron – Data Processing and Performance of Architecture of Spacio – Temporal Networks for Speech Recognition

UNIT V CASE STUDY

9 Hrs

Implementation of BPN Algorithm in a Computer Language - Application of Neural Networks for Pattern Recognition - Data Comparison - Hopfield Networks for an n-bit A/D Converter

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Text books:

- 1. Laurence Fausett, "Fundamentals of Neural Networks: Architecture, Algorithms and Applications", Prentice Hall, 1994.
- 2. J.A. Freeman and B.M.Skapura, "Neural Networks, Algorithms Applications and Programming Techniques", Addison-Wesley, 1990.

References:

- 1. Martin T. Hagan, Howard B. Demuth "Neural Networks Design", 2nd Edition, Martin Hagan, 2014
- 2. Simon Haykin, "Neural Networks and Learning Machines" -3/E Pearson/ Prentice Hall 2009

Subject Code: BEC18E15	Subject Name :	OPTICAL COMMUNICATION	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Digit	al Communication	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

CO5

- To learn the basic elements of optical fiber transmission link, types of fibers, Slicing and connectors.
- To understand the different kind of loss and system design consideration.
- To learn the various optical source materials, LED structures, quantum efficiency, Laser diodes and different fiber amplifiers.
- To learn the fiber optical receivers such as PIN, APD diodes, noise performance in photo detector, receiver operation and configuration.

COURSE OUT The students wi	TCOMES (COs): (3-5) Il be able to
CO1	Analyze the various optical laws and its properties
CO2	Explain any types of fibers.
CO3	Describe study's optical system design by losses in fiber.
CO4	Compare newer technique for designing optical sources

Design efficient optical detectors considering the parameters.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	-	-	-	-	2
CO2	3	3	3	3	3	-	-	-	-	-	-	2
CO3	3	3	3	3	3	-	-	-	-	-	-	2
CO4	3	3	3	3	3	-	-	-	-	-	-	2
CO5	3	3	3	3	3	-	-	-	1	-	-	2
COs / PSOs		PSO1			PS	02		P	SO3		PS	O4

000				_
COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	1	3	2	2
CO2	1	3	3	1
CO3	2	3	1	2
CO4	2	3	1	1
CO5	1	3	2	2

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
					✓				

BEC18E15	OPTICAL COMMUNICATION	3	0/0	0/0	3	
----------	-----------------------	---	-----	-----	---	--

UNIT I IOPTICS 9 Hrs

Reflection-Refraction – Diffraction – Laws of Reflection – Laws of Refraction – Critical Angle-Total Internal Reflection –Focusing, Imaging –Basics of Mirrors and Lenses – Chromatic and Spherical Telescopes

UNIT II OPTICAL FIBERS

9 Hrs

The General System – Evolution of Fiber Optical System – Elements of an Optical Fiber Transmission Link – Cylindrical Fiber – Single Mode Fibers and Multimode Fibers - Fiber Splicing and Connectors

UNIT III OPTICAL LOSSES AND DESIGN

9 Hrs

Absorption Losses, Scattering Losses – Bending Losses – Core and Cladding Losses – Signal Distortion in SM Fibers - Point to Point Links – System Design Consideration — Line Power Budget – Rise Time Budget.

UNIT IV OPTICAL SOURCES

9 Hrs

Direct and Indirect Band Gap Material – LED Structures - LED Power and Efficiency – Modulation – Laser Diodes Structures and Radiation Pattern – Single Mode Lasers – Modulation of Laser Diodes.

UNIT V OPTICAL DETECTORS

9 Hrs

PIN and APD Diodes – Photo Detector Noise, SNR, Detector Response Time, Avalanche Multiplication Noise – Comparison of Photo Detectors – Fundamentals Receiver Operation – FET Pre-amplifiers

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

Textbooks:

- 1. Gerd Keiser, "Optical Fiber Communication System", McGraw Hill, International, Singapore 3rd ed., 2000.
- 2. John M. Senior, "Optical Fiber Communication principles and practice", Prentice Hall of India private limited, 1996.
- 3. Rajiv Ramaswami and Kumar N. Sivarajan, "A Practical Perspective", Harcourt Asia Ptv Ltd., Second Edition, 2004.

Reference Books:

- 1. J. Gower, "Optical communication system", Prentice Hall of India, 2001.
- 2. Govind P. Agrawal "Fiber-Optic Communication Systems", Wiley India 3rd Edition
- 3. C. Siva Ram Moorthy and Mohan Gurusamy, "WDM Optical Networks: Concept, Design and Algorithms", Prentice Hall of India, 1st Edition, 2002. 54
- 4. P.E. Green, Jr., "Fiber Optic Networks", Prentice Hall, NJ, 1993.
- 5. Biswanath Mukherjee, "Optical WDM Networks", Springer Series, 2006.
- 6. https://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2009/lecture-slides/

Subject Co BEC18E16		Su	bject N	lame: R	adar	and Nav	vigation	nal Ai	ds	T / L/ ETL	L	T/SL	r P/F	2	С
		Pr	erequisi	te: Digi	tal Co	mmunic	ation			Ty	3	0/0	0 0	/0	3
L : Lecture	T : Tu	torial	SLr : S	upervise	ed Lea	rning P	: Projec	et R:	Research	C: Cre	dits				
T/L/ETL: T		Lab/En	nbedded	l Theory	and l	Lab									
OBJECTI															
						amentals									
		_	•		_			. .	s of RAD			r oper	ations		
			•		tection te	chniqu	es								
~~~~~				liar with	ques										
COURSE			(COs):	(3-5)											
		e able to stinguish the various types of radar													
CO1				• •				1							
CO2		nderstand the operation of high frequency signal generators.													
CO3		dentify the targeted radar signals in noise Analyze the propagation of radar waves and formation of clutter													
CO4		•	• •	_			and for	matio	n of clutte	r					
CO5				nt navig											
Mapping o														- 1	
COs/Po	OS	PO1	PO2	PO3	PO4	-	PO6	PO7	-	PO9	_	)10	PO11	I	<u>2012</u>
CO1		2	1	1	1	1	1	1	1	1		2	1		3
CO2		2	3	2	1	1	1	1	1	1		3	1		
CO3		1	2	2	2	2	2	2	2	2		3	2		1
CO4 CO5		1	2	2	2	2	2 2	2	2	2	_	3	2		$\frac{1}{2}$
COs / PS	iO _a	1	1 PSO1	1	1	1 PS(		1	1	O3		3	PSO	1	
COS/FS	oos		2	-		2				3			2		
CO2			2			3				2			3		
CO3			$\frac{2}{1}$			3				2			1		
CO4			1			2				2			2		
CO5			1			2				3			2		
3/2/1 indica	ates St	rength	of Cor	relation	3-]	 High, 2-		m, 1-l							
		Ī	50												
Category Basic Sciences		Sciences	Engineering Sciences	Humanities and Social	Sciences	Program Core	Program	Electives	Open Electives Practical /		Project	Internships Technical Skill			Soft Skills
+							<b> </b>	,							



BEC18E16	RADAR AND NAVIGATIONAL AIDS	3 0/0 0/0 3

#### UNIT I RANGE AND TYPES OF RADAR

9 Hrs

Range Parameters, Pulsed Radars, Signal to Noise Ratio, Integration of Pluses Beam Parameters, System Losses and Propagation Effects MTI; CW and Pulse-Doppler Radar, Delay Lines Tracking Radar, Mono pulse, Sequential, Simultaneous, Conical Scan and Monopulse Trackers, Beacons.

## UNIT II TRANSMITTERS, RECEIVERS AND ANTENNA

9 Hrs

Klystron, Magnetron, TWT Amplifiers and Oscillators, Crossed Fields Devices, Parabolic Cassegrainian, Coefficient, Squares Antennas, Radomes, Feeds, Receivers, Performance Figures, Displays Scope and PPI Duplexers.

#### UNIT III DETECTION OF RADAR SIGNALS IN NOISE

9 Hrs

MF, Correlation Detection, Detector Characteristics, Automatic Detection, CFAR Receiver, Pulse Compression and Classification of Targets with Radar.

#### UNIT IV PROPAGATION OF RADAR WAVES AND CLUTTER

9 Hrs

Plane Earth and Spherical Earth Problem, Refraction and Diffraction, GTD Analyzers, Surface and Sea Clutter, Detection of Targets, Effects of Weather on Radar.

#### UNIT V RADAR TOPICS AND NAVIGATIONAL AIDS

9 Hrs

Synthetic Aperture, Over the Horizon Radar, ARSR, ASR, Bistatic and Monostatic Radars, LORAN, ILS, GCA, Direction Finder, VOR Concepts, Airborne Doppler Navigation.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **TEXT BOOKS:**

- 1. M.I. Skoinik "Introduction to Radar Systems:, McGraw Hill 1981.
- 2. N.S. Nagaraja, Elements of Electronic Navigation Systems, 2nd Edition, TMH, 2000.

- 1. F.E. Terman, "Electronics and Radio Engineering" McGraw Hill
- 2. Peyton Z. Peebles:, "Radar Principles", John Wiley, 2004
- 3. J.C Toomay, "Principles of Radar", 2nd Edition -PHI, 2004



# **ELECTIVE III – Electronics Stream**

Subject Code: BEC18E17	:	Subject	Name	: Advan	ced Digi		T / L/ ETL	L	T/S Lr	P/R	С					
		Prerequ	isite: D	igital Ele	ectronics	5			Ту	3	0/0	0/0	3			
L: Lecture T: 7	<b>Futorial</b>	SLr : S	Supervis	sed Lear	ning P:	Projec	t R:Res	earch C	h C: Credits							
T/L/ETL: The	_	Embedd/	ed The	ory and I	Lab											
	able the students the ability to design complex sequential circuits uip the students with the ability to detect and correct faults using various algorithms															
	ΓCOMES (COs):(3- 5)															
The students w																
CO1		Analyze and design synchronous sequential circuits.														
CO2	Interp	erpret the designing techniques of an asynchronous sequential circuit.														
CO3	Experi	Experiment faults and apply testing algorithms for its functionality														
CO4	Evalua	Evaluate the principles of programmable devices for design of sequential circuit.														
CO5	Exhibi	Exhibit the operating of emerging programmable logic devices.														
Mapping of C	ourse Outcomes with Program Outcomes (POs)															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POS	) ]	PO10	PO11	PO12			
CO1	3	3	3	3	3	2	2	3	2		2	2	2			
CO2	3	3	3	3	3	3	2	2	1		2	2	1			
CO3	3	3	3	3	3	2	3	2	2		1	2	2			
CO4	3	3	3	3	3	3	2	2	2		3	3	2			
CO5	3	2	2	3	3	3	3	2	2		3	2	2			
COs / PSOs		PSO1			PSO2			PSO:	3			PSO4				
CO1		3			3			3				2				
CO2		3			3			3				2				
CO3 CO4		3			3			2 2				2 2				
CO5		3			3			3				1				
3/2/1 indicates	Streng	th of Co	rrelati	on 3-1	High, 2-	Mediu	ım, 1-Lo									
Category	Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program Core Program Electives		Program Electives	Open Electives Practical / Project		Practical / Project Internships / Technical Skill		Technical Skill	Soft Skills			
							✓									



BEC18E17	ADVANCED DIGITAL SYSTEM	3	0/0	0/0	3

# UNIT I SEQUENTIAL CIRCUIT DESIGN

9 Hrs

Analysis of Clocked Synchronous Sequential Networks (CSSN), Modeling of CSSN, State Stable Assignment and Reduction, Design of CSSN, Design of Iterative Circuits, ASM Chart, ASM Realization, Design of Arithmetic circuits for Fast adder- Array Multiplier.

## UNIT II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Hrs

9 Hrs

Analysis of Asynchronous Sequential Circuit (ASC) – Flow Table Reduction – Races in ASC – State Assignment Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards – Data Synchronizers – Designing Vending Machine Controller – Mixed Operating Mode Asynchronous Circuits.

#### UNIT III FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS 9 Hrs

Fault Table Method – Path Sensitization Method – Boolean Difference Method – Kohavi Algorithm – Tolerance Techniques – The Compact Algorithm – Practical PLA's – Fault in PLA – Test Generation – Masking Cycle – DFT Schemes – Built-in Self Test.

## UNIT IV SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVICES 9 Hrs

Programming Techniques -Re-Programmable Devices Architecture- Function blocks, I/O blocks, Interconnects, Realize combinational, Arithmetic, Sequential Circuit with Programmable Array Logic; Architecture and application of Field Programmable Logic Sequence.

# UNIT V NEW GENERATION PROGRAMMABLE LOGIC DEVICES

Fold back Architecture with GAL, EPLD, EPLA, PEEL, PML; PROM – Realization State Machine using PLD – FPGA – Xilinx FPGA – Xilinx 2000 - Xilinx 3000

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOKS:**

- 1. Donald G. Givone, "Digital principles and Design", Tata McGraw Hill 2002.
- 2. Stephen Brown and Zvonk Vranesic, "Fundamentals of Digital Logic with VHDL Design", Tata McGraw Hill, 2002

- 1. Donald G. Givone, "Digital principles and Design", Tata McGraw Hill 2002.
- 2. Stephen Brown and Zvonk Vranesic, "Fundamentals of Digital Logic with VHDL Design", Tata McGraw Hill, 2002
- 3. Mark Zwolinski, "Digital System Design with VHDL", Pearson Education, 2004
- 4. Parag K Lala, "Digital System design using PLD", BS Publications, 2003
- 5. John M Yarbrough, "Digital Logic applications and Design", Thomson Learning, 2001.
- 6. Nripendra N Biswas, "Logic Design Theory", Prentice Hall of India, 2001.
- 7. Zvikohavi, "Finite and switching automatic theory," publications?



Subject Code BEC18E18	:	Subject I	Name: I	Embed	ded Sys	tem			T / L/ ETL	L	T/SL:	r P/R	C
		Prerequis Embedde			n to VL	SI Desi	gn and		Ту	3	0/0	0/	0 3
L : Lecture T		SLr : Su	pervised	l Learn		Project	R : Re	esearch C	: Credi	ts		<u> </u>	
T/L/ETL : The	•	Embedded/	Theory	and La	ıb								
• To fac		e students t	o learn	the desi	ign issue	es in mi	crocon	trollers a	nd thei	r perf	orman	ice met	rics.
COURSE OU	JTCOM	ES (COs):	(3-5)										
The students w	ill be able	to											
CO1	Under	stand the ar	chitectu	re of 80	)51 and	68HC1	1 micro	ocontrolle	er.				
CO2	Write	simple prog	rams us	ing ass	embly &	& C lang	guage.						
CO3	Compi	ehend the p	orinciple	of eml	bedded s	softwar	e devel	opment					
CO4	Apply	interrupt ro	outines f	or the r	neasure	ment of	period	, frequen	су				
CO5	Demoi	strate the i	nterfaci	ng of m	icrocon	trollers	with p	eripheral	device	S			
Mapping of C	Course C	utcomes w	ith Pro	gram (	Outcom	es (POs	s)						
COs/Pos	PO	)1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO12
CO1	1	. 1	1	1	2	2	1	1	1	2	2	1	2
CO2	2	2 3	2	2	3	1	1	1	3	2	2	2	2
CO3	2	2 2	3	3	3	1	1	1	3	2	2	2	2
CO4	1	. 3	3	3	3	1	2	2	2	2	2	2	2
CO5	1	. 2	3	3	3	2	2	2	3	2	2	3	2
COs / PSO	S	PSO1			PSO	2		PSC	)3			PSC	)4
CO1		1			2			2				2	
CO2		1			2			2				1	
CO3		1			2			3				2	
CO4		1			2			2				2	
CO5		1			2			3				2	
3/2/1 indicate	s Streng	s Strength of Correlation 3- High, 2- Medium, 1-Low											
	Category Basic Sciences Engineering Sciences			Sciences Program Core Program Program Electives			S	Open Electives Practical / Project			/ S0	al	IIs
Category	Basic Sciences	Engineering Sciences	Humanities and Social	Sciences	Program C	Progran	Elective	Open Elective	Practica	Project	Internships	Technical Skill	Soft Skills



BEC18E18	EMBEDDED SYSTEM	3 0/0 0/0 3

#### UNIT I 68HC11 AND 8051 MICROCONTROLLER

9 Hrs

Embedded Computer systems: - Applications, Software issues, Memory Mapped Architecture, 68HC11 Architecture and Different Addressing Modes, Study of Intel 8051 Microcontroller Architecture and Instruction Set

#### UNIT II PIC MICROCONTROLLER

9 Hrs

Programming of PIC Micro Controllers- Architecture of PIC Micro Controllers - Instruction Set of PIC Micro Controllers. Simple Assembly language and C Program for PIC Microcontroller

## UNIT III SOFTWARE DEVELOPMENT

9 Hrs

Software Development: - Quality Programming, Memory Allocation, Self-Documenting Code, Abstraction, Modular Software Development Device Drivers, Threads Recursion

## UNIT IV INTERUPPTS AND MEASUREMENTS

9 Hrs

Interfacing method: Blind Cycle Counting Synchronization, Gadfly Synchronization, Printer Interfacing Interrupt Synchronization: Reentrant programming, FIFO Queue, 6811 Interrupts Polled Versus Vectored Interrupts Timing Generation and Measurements: MC8811 Input Capture, Period Measurements, Output Compare, Square Wave Generation Frequency Measurements.

## UNIT V I/O DEVICES AND INTERFACING

9 Hrs

Serial I/O devices: RS232 Specifications, Communication Protocols, MC6811 SCI ad SPI. Parallel port Interfaces: Input Switches and Keyboard, output LED, Stepper Motor. Memory Interfacing: Address Switching, Memory Interface, examples for MC6H16, Introduction to High speed I/O Interfacing.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **Text Book:**

- 1. Jonathan. W. Valvano, "Embedded Microcomputer system", Brooks/COLE Thomson learning series
- 2. John B Peatman "Design with PIC Microcontroller" Latest Edison

#### **References:**

- 1. Jonathan. W. Valvano, "Embedded Microcomputer system", Brooks/COLE Thomson learning series
- 2. John B Peatman "Design with PIC Microcontroller" Latest Edison.
- 3. Myke Predko TMH. "Programming and customizing the Microcontroller"



Subject Code: BEC18E19	Subject Name : QUANTUM COMPUTING	T / L/ ETL	L	T/S Lr	P/ R	С
	Prerequisite: Engineering Physics, Mathematics I	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVES:**

- To understand the building blocks of a quantum computer.
- To understand the principles, quantum information and limitation of quantum operations formalizing.
- To understand the various quantum algorithms.

# **COURSE OUTCOMES (COs): (3-5)**

The	Students	***:11	haa	hlata
i ne	Singenis	will	ne a	nie io

CO1	Demonstrate the importance of quantum computing and superposition states.
CO2	Explain Quantum operators and its applications.
CO3	Build quantum circuits with the knowledge of various quantum gates.
CO4	Apply the concept of different quantum algorithms and have the insight of QKD.
CO5	Identify Quantum errors and correct it using Quantum error correcting codes.

# **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	2	2	2	-	-	-	-	-	-	2	
CO2	2	2	2	3	1	-	-	-	-	-	-	1	
CO3	2	3	3	3	2	-	-	-	-	-	-	1	
CO4	2	2	2	3	1	-	-	-	-	-	-	1	
CO5	2	3	3	3	2	-	-	-	-	-	-	-	
COs / PSOs	COs / PSOs PSO1				PSO2			PSO3			PSO4		

COS	_	5	5	5		_	_	_	_	_	_	_		
COs / PSOs		PSO:	1		PSC	02		PSO3			PSO4			
CO1		3			2			2			2			
CO2	2				2			3			1			
CO3	2				3			3			-			
CO4	2				2			2			1			
CO5	2 2 2 2 2				2			3			-			

# 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

	Category
	Basic Sciences
	Engineering Sciences
	Humanities and Social Sciences
	Program Core
✓	Program Electives
	Open Electives
	Practical / Project
	Internships / Technical Skill
	Soft Skills



BEC18E19	QUANTUM COMPUTING	3 0/0 0/0 3

#### UNIT I INTRODUCTION

9 Hrs

Introduction to Quantum Computing- Power of Quantum Computing- Quantum Information- Quantum Computers. The Wave and the Corpuscular Nature of Light Photon Behavior, State Description, Measurement in Multiple Bases, Superposition States – The Superposition probability Rule.

## UNIT II QUANTUM MECHANICS

9 Hrs

Quantum Postulates – State space, Evolution, Quantum Measurement, Distinguishing Quantum states, Projective measurements, POVM measurements -Quantum Mechanics-Hilbert Space-Linear Operators Tensor and Outer Products-Quantum Operators- Application Quantum mechanism: Super dense Coding - Double Silt Experiments.

## UNIT III QUBITS AND QUANTUM GATES

9 Hrs

Qubits, Bloch Sphere Representation-Rotation Operation-The Measurement of a Single Qubits-A Pair of Qubits-Bell States- Qubits as Spin Half- Integer Particles- Qubits as Polarized Photon-Entanglement, Exchange of Information / Teleportation — Quantum Coping Circuit — The Non-Cloning Theorem-Quantum Gates — Universal Quantum Gate Gates — Matrix Representation — Quantum Circuits- Single and Multiple Qubit Controlled Operations.

## UNIT IV QUANTUM ALGORITHM

9 Hrs

Turing Machine - Quantum Parallelism-Deutsch's Problem, Deutsch - Jozsa Algorithm -QFT(Quantum Fourier Transform)-Short's Factoring Algorithm-Simon's Algorithm-Quantum Search Algorithm-Quantum key distribution - Mathematical Models of Quantum Computers - Introduction Different implementations of quantum computer.

## UNIT V QUANTUM ERROR CORRECTION

9 Hrs

Quantum error correction and simple examples – The Three Qubit flip code, Three Qubit Phase flip code, The Shor Code - Brief Introduction to Quantum Computing Software - Quantum error-correcting codes: Error models, Criteria for a good code: reversible operations.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **Textbooks:**

- 1. Dan C. Marinescu, Gabriela M. Marinescu, "Approaching Quantum Computing", Pearson Education 2008-09.
- 2. M.A. Neilson and I.L. Chuang "Quantum computing and Quantum information", Cambridge University Press, 2009.
- 3. Vishal Sahani "Introduction to Quantum Computing", TATA McGraw-Hill Publishing Company Limited.

#### Reference Books:

- 1. A.Yu.Kitaev, A.H.Shen, M.N.Vyalyi, "Classical and Quantum Computation", American Mathematical Society.
- 2. Mark.M. Wilde, "Quantum information theory" Cambridge university press.
- 3. J.A.Jones, "Quantum information, computation and communication" Cambridge University Press.
- 4. Scott Aaronson, "Quantum computing since Democritus", Cambridge University Press 2013.



Subject Co BEC18E20		Subject Name: Power Electronics								T / L/ ETL	L	T/SLr	P/R		С		
Prerequisite: Anal					lysis of Solid State Devices						Ty	3	0/0	0/	0	3	
L : Lecture	T : Tuto	rial	SLr : S	upervise	ed Lea	rning P	: Projec	et R	R : F	Research	C: Cre	dits		I			
T/L/ETL: T		ab/Em	nbeddec	l Theory	y and I	Lab											
OBJECTIV																	
		-	_					_	-	nd curre			_				
				_						and SCR	ks. Seri	ies a	nd para	llel fur	iction	ns o	
		SCRs, Programmable triggering methods of SCR.															
		To learn controlled rectification AC supplies.															
	• To s	study	of conv	erters a	nd inv	erters.											
					ntrol,	charges,	SMPS	and	UP	S.							
COURSE (	OUTCO	MES	(COs)	(3-5)													
The student	s will be	able	to														
CO1	Under	nderstand the operation of power electronic devices.															
CO2	Apply	pply the triggering of SCR for natural and forced commutation.															
CO3	Desig	esign phase-controlled convertors using power diodes.															
CO4	Devel	evelop different types of inverters and choppers.															
CO5	Apply	oply the concepts of power electronics in industries and HVDC system.															
Mapping o	f Course	Out	comes	with Pr	ogran	1 Outcor	nes (Po	Os)									
COs/PO	s P	01	PO2	PO3	PO4	PO5	PO6	PC	<b>7</b>	PO8	PO9	P	<b>D10</b>	PO11	P	O12	
CO1		3	2	3	2	2	2	2	2	2	2		2	1		2	
CO2		3	2	3	3	2	2	2	2	2	1		2	1		2	
CO3		3	3	3	2	3	1	2	2	1	1		2	2		1	
CO4		2	3	3	3	1	1	1	1	1	1		2	1		2	
CO5		3	3	3	3	1	1	1	1	1	1		2	1		2	
COs / PSO	)s	]	PSO1			PSO2				PSC	)3	1	PSO4				
CO1			3		2					2			2				
CO2		2			3				2			2					
CO3		3			2				2			1					
CO4		3			3					2				1			
CO5		3			2				2			1					
3/2/1 indica	ites Stre	ngth		relation	3-1	High, 2-	Mediu	m, 1	1-L								
Category	Basic Sciences		Engineering Sciences	Humanities and Social	Sciences	Program Core	Program	Electives		Open Electives	Practical /	Project	Internships / Technical Skill		Soft Skills		



BEC18E20	POWER ELECTRONICS	3	0/0 0/0 3	
----------	-------------------	---	-----------	--

#### UNIT I POWER ELECTRONIC DEVICES

9 Hrs

Characteristics of Power Devices – Characteristics of SCR – Two Transistor Model of SCR, Characteristics of TRIAC, BJT, MOSFET, IGBT, GTO both Static and Switching Characteristics – Protection of Thyristors against Over Voltage – Over Current, dv/dt and di/dt.

## UNIT II TRIGGERING & COMMUTATION TECHNIQUES

9 Hrs

Turn on Circuits for SCR – Triggering with Single Pulse & Train of Pulses – Triggering with Microprocessor – Different Techniques of Commutation – Natural and Forced Commutation – Series & Parallel Operations.

#### UNIT III PHASE CONTROLLED CONVERTERS

9 Hrs

Converters – Single Phase – Three Phase – Half Controlled and Fully Controlled Rectifiers with R, RL and RLE Loads – Waveforms of Load Voltage and Line Current – Harmonic Factor, Power Factor, Ripple Factor, Distortion Factor – Operation with Freewheeling Diode – Effect of Source Inductance – Dual Converter.

#### UNIT IV INVERTERS & CHOPPERS

9 Hrs

Voltage and Current Source Inverters, Resonant, Series Inverter – Basic Series Inverter, Modified, Improved – PWM Techniques – Single Phase AC Choppers with R and RL Load – Half Wave and Full Wave – DC Choppers – Various Classes of Operation – Buck, Boost and Buck – Boost Type Choppers – Merits and Applications.

## UNIT V AC VOLTAGE CONTROLLERS & INDUSTRAIL APPLICATIONS

9 Hrs

Single-Phase and Three-Phase AC Voltage Controllers - Sequence Control of AC Voltage Regulators. Cycloconverters - Single-Phase and Three-Phase Cycloconverters, SMPS & UPS - Static Compensators - HVDC Transmission System.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **TEXT BOOKS:**

- 1. Rashid, M.H., "Power Electronics Circuits Devices and Applications", Prentice Hall of India, 3 rd Edition, 2004.
- 2. Singh. M. D and Kanchandani, "Power Electronics", Tata McGraw Hill & Hill publication Company Ltd, New Delhi, 2002.

- 1. Dubey, G.K., Doradia, S.R., Joshi, A. and Sinha, R.M., "Thyristorised Power Controllers", Wiley Eastern Limited, 1986.
- 2. Lander, W., "Power Electronics", McGraw Hill and Company, Third Edition, 1993. 3. P.S. Bimbhra, "Power Electronics", Khanna Publishers, 3rd Edition, 1999.



# **ELECTIVE III – Communication Stream**

Subject Co BEC18E21			Subject N Architec		High Speed Switching T / L/ L/ ETL								T/SLr	P/R	С
			Prerequis		•						Ty	3	0/0	0/0	) 3
L: Lecture				•		_	Project	R : I	Resea	arch C	Credit	S			
T/L/ETL: T		Lab/E	mbedded	Theory	and La	ıb									
OBJECTI		o eani	p the stud	ents wit	h the c	oncents	of high	-snee	d sw	vitchine	techni	ianes i	n ATN	A nets	vorks
						oncepts	or mgn	зрес	a sw	v iteliii į	5 teemin	iques i	11 / 1 1 1	vi netv	VOLKS
COURSE			` /	(3-5)											
The student															
CO1				•		of High-speed switching network									
CO2						cepts and LAN switching technology									
CO3						blocking architecture.									
CO4	0	perate	quivering	method	ls in A	TM swit	ches.								
CO5	E	xplain	addressin	g model	& swi	tching to	opologi	es.							
Mapping o	f Cour	rse Ou	tcomes w	ith Pro	gram (	Outcom	es (PO	s)							
COs/PO	Os	PO1	PO2	PO3	PO4					PO8	PO9	PO1	0 P(	<b>D11</b>	PO12
CO1		3	2	2	2	1	2	1		1	2	3		2	2
CO2		3	3	3	3	2	1	3		3	3	1		3	1
CO3		2	3	2	1	1 1 1 2 2			2	3	2		1	3	
CO4		3	3	3	3	3 1 2 1 1				1	3	1		1	3
CO5		3	3	3	2	1	2	2		2	2	3		3	1
COs / PS	SOs		PSO1			PSO	2			PSC	3		PSO4		
CO1			2			1				1			1		
CO2			3			3				3				2	
CO3			3			2				3				1	
CO4			3			3		1						1	
CO5			2							2				1	
3/2/1 indica	ates St	rengtl	of Corre	elation	3- H	igh, 2- N	h, 2- Medium, 1-Low								
		T													
Category	Basic Sciences		Engineering Sciences	Humanities and Social	Sciences	Program Core Program Electives Open Electives		Open Elective	Practical /	Project	Internships /	Technical Skill	Soft Skills		
							<b>✓</b>	•							



BEC18E21	HIGH SPEED SWITCHING ARCHITECTURE	3	0/0	0/0 3	
----------	-----------------------------------	---	-----	-------	--

## UNIT I HIGH SPEED NETWORK

9 Hrs

Introduction-LAN, WAN, Network evolution through ISDN to B-isdn, Transfer mode and control of B-ISDN, SDH multiplexing structure, ATM standard, ATM Adaption layers

## UNIT II LAN SWITCHING TECHNOLOGY

9 Hrs

Switching concepts, Switch forwarding techniques, Switch path control, LAB switching, cut through forwarding, Store and forward, Virtual LANS

## UNIT III ATM SWITCHING ARCHITECTURE

9 Hrs

Switch models, blocking networks-Basic-and-enhanced banyan networks, sorting networks merge sorting, Re-arrange able networks-full-and-partial connection networks, Non-blocking networks-Recursive network construction, comparison of non-blocking network, Switches with deflection routing-shuffle switch, Tandem banyan

## UNIT IV QUEUES IN ATM SWITCHES

9 Hrs

Internal Queuing-Input, Output and shared queuing multiple queuing networks Combined input, Output and shared queuing-performance analysis of Queued Switches

## UNIT V IP SWITCHING

9 Hrs

Addressing model, IP Switching types-flow driven and topology driven solutions, IP over ATM address and next hop resolution, Multicasting, Ipv6 over ATM

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **Text Books:**

- 1. Ranier Handel, Manfred N Huber, Stefan Schroder, "ATM Networks- concepts protocols applications", 3rd Edition, Addison Wesley, New York, 1999
- 2. Achille Pattavina, "Switching Theory: Architecture and performance in broadband ATM Networks", John Wiley & Sons Ltd., New York. 1998

#### References:

- 1. Ranier Handel, Manfred N Huber, Stefan Schroder, "ATM Networks- concepts protocols applications", 3rd Edition, Addison Wesley, New York, 1999
- 2. Achille Pattavina, "Switching Theory: Architecture and performance in broadband ATM Networks", John Wiley & Sons Ltd., New York. 1998
- 3. Christopher Y Metz, "Switching protocols & Architectures", McGraw Hill Professionals publishing, NewYork.1998.



Subject Code: BEC18E22	Subject Name: INFORMATION CODING TECHNIQUES	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Digital Communication	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVES:**

- To have a complete understanding of error–control coding.
- To understand encoding and decoding of digital data streams.
- To introduce methods for the generation of these codes and their decoding techniques.
- To have a detailed knowledge of compression and decompression techniques.
- To introduce the concepts of multimedia communication.

## **COURSE OUTCOMES (COs): (3-5)**

771	C 1	1 4	'11	1	1 1	1	
The	Stud	ente	XX/1	ne	ากเ	А	tΛ
1110	Diuu	CIIIC	VV 111	-	au		w

CO1	Recognize the various coding theorems in information theory
CO2	Interpret the digital modulation techniques in digital coding
CO3	Analyze the different coding methods and apply it for error correction
CO4	Demonstrate the different compression techniques
CO5	Develop a code for audio/video signals

## **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	2	2	2	1	2	1
CO2	3	3	3	3	3	2	2	3	1	2	1	1
CO3	3	3	3	3	3	3	3	2	1	2	3	2
CO4	3	3	3	3	2	3	2	2	2	3	2	1
CO5	3	3	3	2	2	3	2	2	2	2	2	1

005	3 3			2 1
COs / PSOs	s PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	2
CO2	3	3	3	2
CO3	3	3	2	1
CO4	3	3	2	2
CO5	3	3	2	1

## 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

	Category	Basic	Engineering Sciences	Humanities and Social Sciences	Program Co	Program Electives	Open Electives	Practical Project	Internships Technical Skill	Soft Skills
--	----------	-------	-------------------------	--------------------------------------	------------	----------------------	-------------------	----------------------	-----------------------------------	-------------



BEC18E22	INFORMATION CODING TECHNIQUES	3 0/0 0/0 3

## UNIT I INFORMATION ENTROPY FUNDAMENTALS

9 Hrs

Uncertainty, Information and Entropy – Source coding Theorem – Huffman coding –Shannon Fano coding – Discrete Memory less channels – channel capacity – channel coding Theorem – Channel capacity Theorem.

## UNIT II DATA AND VOICE CODING

9 Hrs

Differential Pulse code Modulation – Adaptive Differential Pulse Code Modulation – Adaptive sub band coding – Delta Modulation – Adaptive Delta Modulation – Coding of speech signal at low bit rates (Vocoders, LPC).

## UNIT III ERROR CONTROL CODING

9 Hrs

Linear Block codes – Syndrome Decoding – Minimum distance consideration – cyclic codes – Generator Polynomial – Parity check polynomial – Encoder for cyclic codes – calculation of syndrome – Convolutional codes.

## UNIT IV COMPRESSION TECHNIQUES

9 Hrs

Principles – Text compression – Static Huffman Coding – Dynamic Huffman coding – Arithmetic coding – Image Compression – Graphics Interchange format – Tagged Image File Format – Digitized documents – Introduction to JPEG standards.

## UNIT V AUDIO AND VIDEO CODING

9 Hrs

Linear Predictive coding – code excited LPC – Perceptual coding, MPEG audio coders – Dolby audio coders – Video compression – Principles – Introduction to H.261 & MPEG Video standards.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXTBOOKS:**

- 1. Simon Haykin, "Communication Systems", John Wiley and Sons, 4th Edition, 2001.
- 2. Fred Halsall, "Multimedia Communications, Applications Networks Protocols and Standards", Pearson Education, Asia 2002; Chapters: 3, 4, 5.

- 1. Mark Nelson, "Data Compression Book", BPB Publication 1992.
- 2. Watkinson J, "Compression in Video and Audio", Focal Press, London, 1995.



Subject Code: BEC18E23	Subject Name: MICROWAVE ENGINEERING	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Electromagnetic Waves and	Ту	3	0/0	0/0	3
	Transmission Lines					

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVES:**

- To learn the working of microwave passive devices and generators.
- To Study the operation of microwave active devices and its applications in circuits

		o Study t o Learn t							s and its a _l nts.	pplicati	ons in c	circuits.		
COURSE	OUTC	OMES (	(COs)	(3-5)										
The studen	ts will	be able to	)											
CO1	Ana	alyze the	charac	teristics	of mic	rowave	passiv	e dev	ices using	Scatte	ring ma	ıtrix		
CO2									wave sign					
CO3	Der	nonstrate	e the ch	aracteri	stics of	microv	vave so	olid st	lid state devices.					
CO4	Dev	velop the	conce	ots of m	icrowa	ve trans	istors i	n the	the fabrication of RF circuits.					
CO5	Ana	alyze the	param	eters of	transm	ission l	ines in	micro	nicrowave circuits.					
Mapping of	of Cou	se Outc	omes v	vith Pro	gram (	Outcon	nes (PC	<b>)</b> s)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO	PO7   PO8   PO9   PO10   PO11   PO12					
CO1	_	3	3	2	3	3	-	-	-	-	-	-	-	
CO2	2	3	3	3	3	3	-	-	-	-	-	-	-	
CO3		3	2	2	2	3	-	-	-	-	-	-	-	
CO4		3	2	2	2	2	2	-	-	-	-	1	-	
CO5		3	3	3	3	3	3		-			1	1	
COs / P	SOs		PSO1			PSO	2		PSO3			PSO4		
CO1			2			2			-			-		
CO2	2		3			3			-			2		
CO3	3		-			2			-			3		
CO4	ļ		2			3			2			3		
COS	;		-			3			-			3		
3/2/1 indic	ates St	rength o	f Corr	elation	3- Hi	igh,2- N	<b>Aediun</b>	ledium, -Low						
Category	Basic	Described	Sciences	Humanities and Social	Sciences	Program Core	Program	Electives	Open Electives Practical / Project		Project	Internships / Technical Skill	Soft Skills	



BEC18E23	MICROWAVE ENGINEERING	3 0/0 0/0 3

## UNIT I MICROWAVE PASSIVE DEVICES

9 Hrs

Transmission Lines for use at Microwave Frequencies – Attenuators, Directional Couplers, Terminators, Phase Shifters, Faraday Rotation Isolators and Circulators, Field Displacement Isolators, Microwave Filters, Frequency Meters, Hybrid Junctions – Scattering Analysis.

## UNIT II MICROWAVE GENERATORS

10 Hrs

Limitations of Conventional Tubes at Very High Frequencies – Velocity – Modulated Tubes, Two – Cavity Klystron Amplifiers, Reflex Klystron Oscillators – Periodic Slow Wave Structures and their Use in Travelling Wave Tube Amplifiers, Focusing Techniques, TWTA Performance Characteristics – Electron Motion in Crossed Electric and Magnetic Fields - Magnetron Oscillators, Hartree Equation Rieke Diagram and Performance Charts .

## UNIT III MICROWAVE SOLID-STATE DEVICES

9 Hrs

Varactor Diodes, Manley – Rowe Relations, Low Noise Parametric Amplifiers – Transferred – Electron Devices and Their Operation, Cavity – Controlled Modes, LSA Mode-Avalanche – Transit Time Devices and Their Operation, TRAPATT Mode, BARITT mode, PIN Diodes and Their use as Attenuators and Switches.

## UNIT IV MICROWAVE CIRCUITS

8 Hrs

Small – Signal Equivalent Circuits, High-Frequency Applications, Performance Criteria and Limitations of BJTs and FETs – HEMTs – Fabrication Techniques.

## UNIT V MICROWAVE MEASUREMENTS

9 Hrs

Slotted - Line Techniques - Measurements of Wavelength - Measurement of Low and High VSWR - Measurement of Frequency and Frequency Meters - Measurement of Insertion Loss and Attenuation by Substitution Methods - Measurement of Low and High Powers at Microwave Frequencies - Modern Measurement Techniques using Automatic Network Analyzer and Spectrum Analyzer.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **Textbooks:**

- 1. Annapurna Das, Sisir. K. Das, "Microwave Engineering", Tata McGraw Hill Co., Ltd., 1999. Reprint 2001.
- 2. Samuel Y. Liao: "Microwave Devices and Circuits", Prentice Hall of India 3rd Edition (2003)
- 3. SubalKar, "Microwave Engineering", Universities press(India) private limited 1st Edition (2016)

## **Reference Books:**

- 1. D.M. Pozer, "Microwave Engineering", Addison Wesley, 1998.
- 2. R.E. Collins: "Foundations for Microwave Engineering", IEEE Press Second Edition (2002) David K. Cheng," Field and Waves in Electromagnetism", Pearson Education, 1989.



Subject Co BEC18E24			bject N chniqu		Optical	Netwo	rk and	Switc	hing	T / L/ ETL	L	T/SLr	P/R	С
		Pr	erequisi	te: Co	mpute	r Com	nunica	tion		Ту	3	0/0	0/0	3
L : Lecture T/L/ETL :						rning I Lab	P : Proj	ect R:	Resear	ch C: C	Credits			·
OBJECTI	VES:													
<ul> <li>To</li> </ul>	learn	basic e	element	ts of or	otical c	commu	nicatio	n						
<ul> <li>To</li> </ul>	under	stand 1	networ]	ks and	switch	ning tec	hnique	es						
COURSE The Studen				: (3-5	5)									
CO1	1	Unders	stand th	ne basio	elem	ents of	optica	l fiber.	i					
CO2	1	Unders	stand th	ne conc	ept of	switch	ing ne	twork	in OSI	layer.				
CO3		Explai	in all ty	pes of	optica	al netwo	orks.							
CO4		Analyz	ze mult	iple ac	cess m	nethods	in WI	OM.						
CO5	1	Unders	Inderstand the all optical switches.											
Mapping o	of Cou	rse Out	tcomes	with P	rogran	n Outco	omes (I	POs)						
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	O12
CO1		3	1	1	3	1	1	1	1	1	1	1		3
CO2		3	3	1	1	1	1	3	1	1	1	3		1
CO3		1	3	3	1	1	3	1	1	1	3	1		1
CO4 CO5		3	3	3	3	3	1	3	1	1	3	1		3
COs / PS		3	PSO1			PS				SO3	1	_	PSO4	3
CO1	, , ,		3			2				1			1	
CO2			3			2				1			1	
CO3		2 3				2			2					
CO4			1 3				2			2				
CO5		_	3			3				1			1	
3/2/1 indic	ates St	rength	of Cor	relatio	n 3-	High,2-	Mediu	ım,-Lo	W		1			
Category	Basic Sciences		Engineering Sciences	Humanities	Sciences	Program Core	Program	Electives	Open Electives		Practical / Project	Internships /	ICAI JAIII	Soft Skills



BEC18E24 OPTICAL NETWORK AND SWITCHINGTECHNIQUES 3 0/0 0/0 3

## UNIT I INTRODUCTION

9 Hrs

Optical communication – Basics of sources, transmitters, Modulators, Optical fiber, photo detectors, and receivers – Switching in networks – circuit switched – Packet switched – cell switched – Virtual circuit switched – Burst switched (fast circuit switched) – Transmission / Asynchronous – synchronous.

## UNIT II SWITCHING NETWORKS

9 Hrs

Layering in packet switched networks – motivation – commonly used abstraction: Physical layer – Data link layer – Network layer – Transport layer – Application layer – Layering in circuit switched networks – Physical layer – Multiplexing standards – Signaling – CAS, CCS, SS7 concept – Data plane – management plane – control plane – concept.

## UNIT III OPTICAL TRANSMITTER AND RECEIVERS

9 Hrs

First generation networks – SDH/SONET – Computer interconnections – ESCON – Fiber channel – HIPPI – FDDI – ATM –DQDB – Components – description – Mode locked laser (for ps pulses) – Tunable filters – multiplexers – De-multiplexers – Tunable wavelength convertors – Optical amplifiers.

Fiber – EDFA – SOA – Tunable transmitters – Tunable receivers – Dispersion compensating fibers – Multiplexing techniques – SDM – TDMA – WDMA (OFDMA) – DWDM – SCM – CDMA – Protocols for single channel broadcast networks – ALOHA, CSMA/CD – Problems with CSMA/CD – Definition of high speed network.

## UNIT IV MULTIPLE ACCESS METHODS

9 Hrs

Classifications of multiple access methods – Random access – Reserved access – Scheduled access – Multichannel multiple access protocols – Desirable characteristics of protocol – Scalability – Fairness – TTTR – TTFR – FTTR – Problem of wavelength stability – Multi hop WDM network – Shuffle net – MSN – Wavelength routed networks – Mesh – Ring – Traffic grooming problem – IP over optical framework – ASON – MpeS – Burst switched network (buffer less networks).

## UNIT V OPTICAL SWITCHES

9 Hrs

 $All-optical\ circuit\ switches-All-optical\ packet\ switches-Broadcast\ and\ select-Wavelength\ routed-Spaced\ switch\ based-Discussion\ on\ various\ switch\ architectures-Packet\ buffering\ techniques:\ Travelling\ type-Recirculating\ type:\ Protection\ and\ restoration-Restoration\ mechanism:\ Restoration\ timing\ issues-Path\ protection-\ Span\ protection-\ P-cycles.$ 

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **Text Books:**

- 1. Gerd Keiser, "Optical Fiber Communication" Mc Graw -Hill International, 4 th Edition., 2010.
- 2. Hussein T. Mouftah and Jaafar M. H. Elmirghani, "Photonic Switching Technology Systems and Networks ", IEEE Press, New York -10016-5997, ISBN 0-7803-4707-2.
- 3. C. Siva Rama Murthy and Mohan Gurusamy, "WDM Optical Networks Concepts, Design and Algorithms", Prentice Hall of India Pvt. Ltd, New Delhi –2002.

B.Tech ECE 2018 Regulation(Revised)



## **Reference Books:**

- 4. John M. Senior, "Optical Fiber Communication", Second Edition, Pearson Education, 2007.
- 5. Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009.
- 6. J.Senior, "Optical Communication, Principles and Practice", Prentice Hall of India, 3 rd Edition, 2008.
- 7. J.Gower, "Optical Communication System", Prentice Hall of India, 2001.
- 8. Uyless Black, "Optical Network: Third Generation Transport System", Pearson Education, 1st edition, 2002.
- 9. Rajiv Ramaswamy and Kumar N.Sivarajan, "Optical Networks A Practical Perspective", Morgan Kauffman, 2004



# **ELECTIVE IV – Electronics Stream**

Subject Co BEC18E25		S	ubject l	Name :	Device	Modeli	ng		]	T / L/ ETL	L	T/SL	r P/I	₹	С	
				ite: Intred System		on to VL	SI Desi	gn ar	ıd	,	Ту	3	0/0	0	/0	3
L : Lecture	T : Tu					ing P:	Project	R : 1	Resear	rch C:	Credi	ts				
T/L/ETL:							3									
OBJECTI																
<ul> <li>To</li> </ul>	unders	stand pas	sive dev	vices an	d struc	tures										
		_				OS devi	ces									
COURSE			(COs):	(3-5)												
The Student				types and structures of resistors & capacitors in IC.												
CO1								_								
CO2						ehavior o		ated	diode	S.						
CO3						ated BJT										
CO4						S &their										
CO5						signal r			device	es usir	ng SPI	CE.				
	oing of Course Outcomes with Program Outcomes (POs)															
COs/PO		PO1	PO2	PO3	PO4	PO5	PO6	PO	7 P	<b>PO8</b>	PO9		)10	PO11	I	PO12
CO1		3	3	2	2	1	2	3		2	3		2	3		2
CO2		3	3	3	3	3		2 3 3			2	_	2	3		3
CO3		3	3	3	3	3	1	3		2	3	_	1	3		3
CO4		3	3	3	3	3	2	3		3	3	_	2	3		3
CO5		3	3	3	3	3	2	3		3	3	1 2	2	3		3
COs / PS			PSO1			PSO	2			PSO	3			PSC	)4	
CO1			3			3				2				3		
CO2 CO3			3			3 2				3				3		
CO4							3				3					
CO5	_							3				3				
3/2/1 indic		rength	of Corr	elation	3- Hi	igh, 2- N	<b>Iedium</b>	, 1-L	ow							
Category	Category  Basic Sciences  Engineering Sciences  Sciences		Humanities and	Social Sciences	Program	Program Electives Open Electives		Open Electives	Practical / Project		Internships / Technical Skill			Soft Skills		
						✓										



BEC18E25	DEVICE MODELING	3	0/0	0/0	3

## UNIT I INTEGRATED PASSIVE DEVICES

9 Hrs

Types and Structures of Resistors and Capacitors in Monolithic Technology – Dependence of Model Parameters on Structure.

## UNIT II INTEGRATED DIODES

9 Hrs

Junction and Schottky Diodes in Monolithic Technologies – Static and Dynamic Behavior – Small and Large Signal Models – SPICE Models.

## UNIT III INTEGRATED BIPOLAR TRANSISTOR

9 Hrs

Types and Structures in Monolithic Technologies – Basic Model (Eber Moll_-Cunmel – Poon Model – Dynamic Model, Parasitic Effects – SPICE Model – Parameter Extraction.

## UNIT IV INTEGRATED MOS TRANSISTOR

9 Hrs

n-MOS and p-MOS Transistor – Threshold Voltage -Threshold Voltage Equations – MOS Device Equations – Basic DC Equations Second Order Effects – MOS Models Small Signal AC Characteristics – MOSFET SPICE Model Level 1,2,3,4

## UNIT V SPICE MODELLING

9 Hrs

Advanced Concepts of Large Signal & Low Signal Modeling

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOKS:**

- 1. Daniel Foty, "MOSFET Modeling with Spice" prentice hall, 1997.
- 2. Neil Weste and Kamran Eshranghian "Principles of CMOS VLSI Design, A System Perspective", "Addition Wesley, 1993.

- 1. Jacob Millman & Arvin Millman, "Micro Electronics", McGraw Hill (Second Edi) 1987.
- 2. M. Satyagi, John Wiley "Introduction to Semi-conductor materials and devices", New Edition.



Subject Co BEC18E26		Su	bject N	lame : `	VLSI T	<b>Fechnol</b>	ogy			T / L/ ETL	L	T/SL	r P/R		С	
		Pr	erequisi	te: Ana	lysis of	Solid S	tate De	vices		Ty	3	0/0	0/	0	3	
L : Lecture	T : Tut	orial	SLr : S	upervise	ed Lear	ning P	: Projec	t R:	Research	C: Cre	dits		•	· ·		
T/L/ETL:	Theory/	Lab/Eı	nbedde	d Theor	y and I	_ab										
OBJECTI																
<ul> <li>To</li> </ul>	enable	the stu	dents to	unders	tand va	rious de	sign flo	ow in V	VLSI and	their a	pplic	ations	in fuzz	y sys	stems	
COURSE	OUTC	OMES	S (COs): (3-5)													
The Students				. ( ,	•											
CO1	Stuc	ly the f	abricati	prication of CMOS transistor & its layout.												
CO2	Inte	rpret th	e interc	interconnection resistance & capacitance & their extraction.												
CO3			distribution of clock signals in a chip.													
CO4				SI implementation of FLC and study about testing techniques.												
CO5	Des	ign diff	Ferent types of adders and multiplier.													
Mapping o	f Cour	se Out	comes with Program Outcomes (POs)													
COs/PO	)s	PO1	PO2	PO3	PO4	PO5	PO8	PO9	P	010	PO11	P	O12			
CO1			1	2	1	3	2	3		3	3		3			
CO2		3	3	2	3	3	2	3	2	3		3	3		3	
CO3		3	3	3	2	3	3	3	2	3		2	3		3	
CO4		3	3	3	3	3	3	3	1	3		2	3		3	
CO5		3	3	3	3	3	3	3	2	3		3	3		3	
COs / PS	SOs		PSO1	1		PS(	)2		PS	О3			PSO4			
CO1			3			2				2			3			
CO2			3			3				2			3			
CO3			3			3				3			3			
CO4			3			3				2			3			
CO5	. 20		3			3				3			3			
3/2/1 indica	ates Sti	rength	h of Correlation 3- High,2- Medium, 1-Lov													
Category	Category  Basic Sciences  Engineering Sciences Aumanities and Social				Sciences	Sciences Program Core Program Electives Open Electives				Practical /			Internships / Technical Skill		Soft Skills	
							✓									



BEC18E26	VLSI TECHNOLOGY	3	0/0	0/0	3

## UNIT I VLSI DESIGN FLOW

9Hrs

Design hierarchy concepts of regularity, modularity & locality VLSI Design styles - CMOS Fabrication Technology- Introduction, Fabrication Process flow- basic steps, CMOS n-well process, Advanced CMOS fabrication technologies, layout design rules-Introduction-Full – custom Mask Layout design –CMOS Layout design rules – CMOS inverter Layout design – Layout of CMOS NAND & NOR gates – Complex CMOS Logic gates

# UNIT II PARASITIC EXTRACTION & PERFORMANCE ESTIMATION FROM 9 Hrs PHYSICAL STRUCTURE

Introduction – Reality with inter connection –MOSFET capacitances-interconnect capacitance estimation – interconnect resistance estimation

## UNIT III CLOCK SIGNALS & SYSTEM TIMING

9 Hrs

On chip clock generation & distribution using ring & pierce crystal oscillator – non – overlapping clock signals and gate level implementation – H-tree clock distribution N/W – clock skew reduction – Zero – Skew clock routing N/W- Clock distribution N/W for DEC alpha  $\mu p$  chips

# UNIT IV TESTABILITY OF INTEGRATED SYSTEMS-VLSI FOR FUZZY 9Hrs LOGIC SYSTEMS

Design constraints – Testing – The rule of ten – terminology – Failures in CMOS – Combinational Logic Testing – Practical Ad-Hoc DFT guidelines – Scan design techniques- Integrated implementations of FLC, Digital implementation of FLC's, Analog implementation of FLC's, Mixed digital / analog implementations of Fuzzy systems, CAD automation for FLC DESIGN, NN implementing fuzzy systems.

## UNIT V ARITHMETIC FOR DIGITAL SYSTEMS

9Hrs

Introduction – notation systems – Principles of generation & propagation – 1 bit full adder – Enhancement Techniques for Adders – multi operand – Adders – Multiplication – Addition and Multiplication in Galois Fields GF(2n)

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOKS:**

- 1. Cheng., SZE., "VLSI Technology"., Prentice Hall of India,
- 2. Douglas A. Pucknell and Kamran Eshraghian, "Basic VLSI Design Systems and Circuits", Prentice Hall of India Pvt Ltd., 1993.

- 1. Cheng., SZE., "VLSI Technology"., Prentice Hall of India,
- 2. Douglas A. Pucknell and Kamran Eshraghian, "Basic VLSI Design Systems and Circuits", Prentice Hall of India Pvt Ltd., 1993.
- 3. Horspool., Gorman., "The ASIC Handbook", Tata McGraw Hill Publications., 1999
- 4. Randall .L. Geiger and P. E. Allen, "VLSI Design Techniques for Analog and Digital Circuits", McGraw Hill International Company, 1990

Subject Code: BEC18E27	Subject Name : Biomedical Instrumentation	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

 $T/L/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$ 

## **OBJECTIVES:**

- To study the methods of recording various bio potentials
- To study how to measure biochemical and various physiological information
- To understand the working of units which will help to restore normal functioning To understand the use of radiation for diagnostic and therapy

	<ul> <li>To understand the use of radiation for diagnostic and therapy</li> <li>To understand the need and technique of electrical safety in Hospitals</li> </ul>													
COURSE The studen			(COs)	•										
CO1	En	able th		ents to de			_							
				laborato				the	reby	recogn	ize thei	r limitati	ons.	
CO2	Int	erpret t	technic	al aspect	ts of m	nedicine	<b>e.</b>							
CO3				dents w lical diag				ıl e	equi	pment's	and	their te	chnical	aspects.
CO4				nts to the				ved	in s	ome me	dical ed	quipmen	t's.	
CO5	Ur	nderstar oblem.	nding t	he probl	em an	d abilit	y to ide	ntif	fy th					specific
Mapping	of Cours	e Outc	omes v	with Pro	gram	Outco	mes (PC	Os)						
COs/I	POs	PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12												
CO	1	2	1	1	1	1	3		3	3	3	1	3	3
CO	2	1	1	1	2	1	3		3	2	3	1	2	2
CO		1	2	1	2				3	3	2	3	2	
CO		1	1	1	1	2	3		3	3	3	2	2	2
CO		1	2	2	1	2	3		3	3	3	2	2	2
COs / l			PSO	1		PSC	)2			PSC	)3		PSC	)4
CO			1			1				3			2	
CO	)2		1			2				3			1	
CO	)3		1			2				3			2	
CO			3			2				3			3	
CO			3			2				3			2	
H/M/L in	dicates S	trengtl	n of Co	orrelatio	n H	- High,	M- Me	ediu	ım,	L-Low				
Category	Basic Sciences	Fnoineerino	Sciences	Humanities and Social	Sciences	Program Core	Program	Electives		Open Electives	Practical /	Project Internships /	Technical Skill	Soft Skills
							✓							



BEC18E27	BIOMEDICAL INSTRUMENTATION	3 0/0 0 /0 3

#### UNIT I BASIC PHYSIOLOGY

9 Hrs

Cells and their Structures – Transport of Ions Through Cell Membrane – Resting and Excited State – Trans membrane Potential – Action Potential – Bio-Electric Potential – Nervous System – Physiology of Muscles – Heart and Blood Circulation – Respiratory System – Urinary System.

## UNIT II BASIC TRANSDUCER PRINCIPLES AND ELECTRODES

9 Hrs

The Transducer Principles – Active Transducers – Passive Transducers – Transducer for Bio-Medical Application – Electrode Theory- Bio-Potential Electrode – Bio-Chemical Transducer.

## UNIT III CARDIOVASCULAR SYSTEM

9 Hrs

 $\label{local-condition} The \ Heart \ and \ Cardiovascular \ System-Blood \ Pressure-Characteristics \ of \ Blood \ Flow-Heart \ Sounds-Electro \ Cardiograph-Measurements \ of \ Blood \ Pressure-Measurement \ of \ Blood \ Flow \ and \ Cardiac \ O/P \ Plethysmography-Measurements \ of \ Heart \ Sounds$ 

## UNIT IV X-RAY AND RADIOISOTOPE INSTRUMENTATION:

9 Hrs

X-ray Imaging Radiography – Fluoroscopy – Image Intensifiers – Angiography - Medical use of Radioisotopes – Beta Radiations – Detectors – Radiation Therapy.

## UNIT V BIO-TELEMETRY

9 Hrs

 $Introduction\ to\ Bio-Telemetry-Physiological\ Parameters\ Adaptable\ to\ Bio-Telemetry-The\ Components\ of\ Bio-Telemetry\ Systems-Implantable\ Units-Applications\ of\ Telemetry\ in\ Patient\ Care-Application\ of\ Computer\ in\ Bio-Medical\ Instrumentation,\ Anatomy\ of\ Nervous\ System-Measurement\ from\ the\ Nervous\ System-EEG-EMG.$ 

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## Text books:

- 1. M. Arumugam, "Bio-medical Instrumentation" Anuradha Agencies Publishers, 1992.
- 2. Khandpur," Handbook on Biomedical Instrumentation" Tata McGraw Hill Co Ltd., 1989.

## **References:**

- 1. Leusis Cromwell Fred, J. Werbell and Erich A.pfraffer, "Biomedical instrumentation and Measurements" Prentice Hall of India, 1990.
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical equipment Technology", John Wiley and Sons, New York, 1997



Subject Co BEC18E28		S	Subject	Name:	Embe	edded S	oftwar	e Des	0	Γ/L/ ETL	L	T/SLr	P/R	(	
		Pre	requisit	e: C Pr	ogramı	ming wi	th Linu	IX	,	Гу	3	0/0	0/0	) 3	
L : Lecture	: T: Tı	ıtorial	SLr : S	upervis	ed Lea	arning I	P: Proj	ect R	: Resear	ch C: C	redits				
T/L/ETL:	Theory	y/Lab/E	mbedde	ed Theo	ry and	Lab									
<b>OBJECTI</b>	VE:														
•	To in	nplemen	t softwa	are desi	gn for	an embe	edded s	ystem	using C	and ass	sembly	level pr	ogran	ns	
COURSE The Studen				: (3-5	5)										
CO1		Underst	tand the	conce	ot of ba	asic emb	edded	syster	n						
CO2						g C and									
CO3		Differe	ntiate th	ne meth	ods of	IO prog	rammi	ng usi	ng interr	upts					
CO4		Applyir	ng sche	duling 1	nethod	ls for m	ılti-thr	eaded	program	ming					
CO5		Demons	strate th	ne princ	iple of	shared	memor	y and	memory	manag	ement				
Mapping o	of Cou	rse Out	se Outcomes with Program Outcomes (POs)												
COs/PO	)s	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12													
CO1		1	1	1	1	1	2	1	1	1	1	1		2	
CO2		1	2	2	2	3	1	1	1	1	2	3		2	
CO3		1	3	2	3	3	1	1	1	1	2	2		1	
CO4		1	3	3	3	3	1	1	2	3	2	2		2	
CO5	_	1	2	3	3	3	2	2	3	2	2	3		2	
COs / PS	Os		PSO1			PSO	)2		PS	803			PSO ₂	4	
CO1			1			1				1			<u>l</u>		
CO2			2			2				3			1		
CO4			2			$\frac{2}{2}$				3			2		
CO5		1 1 3										2			
3/2/1 indic	ates S	trength	of Cor	relatio	n 3-	High, 2	- Medi	um, 1	-Low		I		<u> </u>		
Category	Category  Basic Sciences  Engineering Sciences  Humanities			Humanities	Sciences Program Core			Electives	Open Electives Practical /		Practical / Project	Internships / Technical	Skill	Soft Skills	
							1	/							



BEC18E28	Embedded Software Design	3 0/0 0/0 3

#### **UNIT I** Introduction to embedded system and data representation

9 Hrs

Embedded system-Design goals for embedded software- Real time and multi-tasking-Embedded processors and languages-Building an embedded application-Data representation-Fixed precision binary numbers-Binary representation of Integers and real numbers-ASCII and BCD number.

## **UNIT II Programming in C and assembly Language**

9 Hrs

Integer data types – useful typedefs and defines - manipulating bits in memory and I/O ports – Accessing memory – mapped I/O devices – structures -variant access – programming in assembly – register usage conventions – addressing options – instruction sequencing – procedure call and return – parameter passing – retrieving parameters .

## **UNIT III** Input output programming

9 Hrs

 $I/O\ instructions-synchronization,\ transfer\ rate\ and\ latency-polled\ waiting\ loops-interrupt\ driven\ I/O-interrupt\ service\ routine-Buffers\ and\ queues\ -ISR\ in\ assembly\ and\ C-Non-maskable\ interrupts\ -Software\ interrupts-Exceptions\ -\ direct\ memory\ access\ -comparison\ of\ methods\ .$ 

## **UNIT IV Concurrent software and scheduling**

9 Hrs

Foreground/background systems - Multi threaded programming - shared resources and critical sections - thread states - pending threads - context switching - round-robin scheduling - priority based scheduling - assigning priorities - deadlock -watchdog timers.

## **UNIT V** Memory management and shared memory

9 Hrs

Objects in C-scope-lifetime-automatic allocation-static allocation-Dynamic allocation-recognizing shared objects-reentrant functions-read only data-accessing shared memory.

## Practical component P: Include case studies / application scenarios

## Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOKS:**

- 1. Daniel W. Lewis, "Fundamentals of embedded software where C and assembly meet", Pearson Education, 2002.
- 2. Steve Heath, "Embedded system design", Elsevier, 2003.

- 1. Daniel W. Lewis, "Fundamentals of embedded software where C and assembly meet", Pearson Education, 2002. 2. Steve Heath, "Embedded system design", Elsevier, 2003.
- 3. David E. Simon, "An Embedded Software Primer", Pearson Education, 2003.



# **ELECTIVE IV – Communication Stream**

Subject Coo BEC18E29	de:	Su	bject N	lame: S	preac	d Spectru	ım Cor	nmun	ication	T / L/ ETL	L	T/SL1	P/R	С
			erequisi mmuni		nmuni	cation Th	eory, [	Digital		TY	3	0/0	0/0	) 3
L : Lecture T/L/ETL : T							: Projec	t R:]	Research	C: Cred	lits		•	•
	OBJECTIVE:     To enable the students to learn the concepts of spread spectrum systems and their performance metrics  COURSE OUTCOMES (COs): (3-5)													
	URSE OUTCOMES (COs): (3-5)													
The Students														
CO1						DSSS &								
CO2						ead spect								
CO3			re the various type of spread spectrum modulation formats.  nize the difference & benefits of spreading codes.											
CO4														
CO5		imate the spreading code acquisition and tracking circuits.												
Mapping of	f Course Outcomes with Program Outcomes (POs)													
COs/POs														
CO1		3	3	2	2	1	1	3	2	2		3	2	2
CO2		3	3	2	3	2	3	3	2	2	_	2	3	2
CO3		3	3	3	3	3	3	2	3	2		3	2	3
CO4 CO5		3	3	3	3	3	3	3	2	3		2	3	2
COs / PSC	)c		PSO1	3		PSO2			PSO	_		2	PSO	1
CO1			3			2			2				3	•
CO2			3			3			2				2	
CO3			3			3			3				3	
CO4			2			3			3				2	
CO5			3			3			2				3	
3/2/1 indica	tes S	trength (	of Cori	elation	3-	High, 2-	Mediu	m, 1-L	ow	_		_		
Category	Basic	Sciences	Engineering Sciences	Humanities and Social					Open Electives	Practical /	Project	Internships /	Skill	Soft Skills
							<b>✓</b>							



BEC18E29	SPREADSPECTRUM COMMUNICATION	3 0/0 0/0 3
----------	------------------------------	-------------

## UNIT - I INTRODUCTION

9 Hrs

Communication in the presence of pulse noise jamming - Low probability detection scheme - Director Sequence Spread Spectrum (DSSS) and Frequency Hop Spread Spectrum Systems and examples of Spread Spectrum Systems

# UNIT – II PERFORMANCE CHARACTERIZATION OF DIGITAL 9 Hrs DATA TRANSMISSION

Detection of binary signals in AWGN - Quadrature multiplexed signaling schemes - Signaling through band limited channels - Equalization of digital data transmission system - Realization imperfections - Degradations in performance.

## UNIT – III SPREAD SPECTRUM SYSTEMS

9 Hrs

Direct sequence spread spectrum methods employing BPSK, QPSK and MSK - Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow and fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum - Complex envelope representation of spread spectrum systems.

# UNIT – IV BINARY SHIFT REGISTER SEQUENCES FOR SPREAD SPECTRUM SYSTEMS

9 Hrs

Definition - PN sequence generator fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for maximal length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators.

## UNIT – V SYNCHRONIZATION OF SPREAD SPECTRUM SYSTEMS: 9 Hrs

Optimal tracking of wideband signals - Early-late tracking loops - Code tracking loops for FHSS - Optimum synchronization techniques - Multiple dwell and sequential detectors - Synchronization using a matched filter - Synchronization by estimating the received spreading code.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOKS:**

- 1. Ziemer, R.E & Peterson, R.L., "Digital Communication and Spread Spectrum Systems", Mac millan Publishing Co., 1985.
- 2. Holms, J.K., "Coherent Spread Spectrum systems", Wiley Interscience, 1982.

- 1. Ziemer, R.E & Peterson, R.L., "Digital Communication and Spread Spectrum Systems", Mac millan Publishing Co., 1985.
- 2. Holms, J.K., "Coherent Spread Spectrum systems", Wiley Interscience, 1982.
- 3. Dixon, R.C., "Spread Spectrum Systems", Wiley Interscience, 1976.
- 4. Charles E Cook., etal, "Spread-Spectrum Communications", IEEE Press, Inc, New York,



Subject Coo BEC18E30	le:	Su	bject N	lame: N	Networ	k Mana	ngemen	t		T / L/ ETL	L	T/SI	Lr P/	R	С	
		Pro	erequisi	te: Con	nputer (	Commu	nication	ì		Ty	3	0/0	) (	)/0	3	
L : Lecture						_	: Projec	t R:	Research	C: Cre	dits		-			
T/L/ETL: T		/Lab/Er	nbedde	d Theor	y and I	_ab										
OBJECTIV	<ul> <li>To</li> </ul>			idents, l		e conce	pts of n	nanagi	ng the va	rious ca	atego	ories o	f netwo	orks a	and	
COURSE O	OUTC	OMES	(COs)	: (3-5	)											
The students																
CO1	Und	lerstand	the fur	ndamen	tals of	various	networl	c topo	logies.							
CO2	_								unication	systen	1					
CO3				_		/IP and				-						
CO4	App	reciate	& anal	yze the	diverse	function	ons of b	road b	and netw	ork mai	nage	ment.				
CO5				-		s of net										
Mapping of	Cour	se Out	comes	with Pr	ogram	Outco	mes (PC	Os)								
			PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	<b>D10</b>	PO11		PO12		
CO1		3	2	1	1	3	1	1	1	1		1	1		3	
CO2		3	3	1	1	3	1	1	1	1		1	1		1	
CO3		3	3	1	3	3	1	1	1	1		1	1		1	
CO4		1	3	1	3	1	1	2	1	1		1	1		1	
CO5		1	3	3	1	1	1	1	1	1	1 1			1		
COs / PS	Us		<b>PSO</b> 2	L		PS(	<u>)2</u>			SO3 2			PSO4			
CO2			1			3				<u></u> 1		1				
CO3			1			3				1			2			
CO4			3			1		2						3		
CO5			1			3				1				3		
<b>3/2/1 indica</b>	tes St	rength	of Cor	relatior	3- H	ligh, 2-	Mediu	m, 1-I	Low							
Category	Basic Sciences Engineering Sciences		Humanities and	Social Sciences	Program Core		Electives	Open Electives		Project	•	Internships / Technical Skill		Soft Skills		
							<b>✓</b>									



BEC18E30 NETWORK MANAGEMENT 3 0/0 0/0 3
-----------------------------------------

## UNIT – I FUNDAMENTALS OF COMPUTER NETWORK TECHNOLOGY 9Hrs

Network Topology, LAN, Network node components – Hubs, Bridge, Gateways, Switches, WAN, ISDN – Transmission Technology, communication protocols and standards

## UNIT -II OSI NETWORK MANAGEMENT

9Hrs

OSI Network management model – Organizational model – Information model, communication model. Abstract Syntax Notation – Encoding structure, Macros Functional model CMIP / CMIS

## UNIT – III INTERNET MANAGEMENT (SNMP)

9Hrs

SNMP-Organizational model – system Overview, The information model, communication model-Functional model, SNMP proxy server, Management information, protocol remote monitoring

## UNIT – IV BROADBAND NETWORK MANAGEMENT

9 Hrs

Broadband networks and services, ATM Technology-VP, VC, ATM Packet, Integrated service, ATMLAN emulation, Virtual LAN. ATM Management Information base, Role of SNMD and ILMI in ATM Management, M1, M2, M3, M4 Interface. ATM Digital Exchange Interface Management

#### UNIT -V NETWORK MANAGEMENT APPLICATIONS

9 Hrs

Configuration management, Fault management, performance management, Event Correlation Techniques security Management Service Level Management

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOKS:**

1. Mani Subramaniyan, "Network Management Principles and Practice", Addison Wesly.New York 2000 2.Lakshmi G. Raman, "Fundamentals of Telecommunication Network Management", Eastern

- 1. Mani Subramaniyan, "Network Management Principles and Practice", Addison Wesly.New York 2000 2.Lakshmi G. Raman, "Fundamentals of Telecommunication Network Management", Eastern
- 3. Economy Edition IEEE, Press, New Delhi-1999
- 4. Salah Aiiarous, Thomas Plevayk, "Telecommunications Network Management Technologies and Implementations", eastern Economy Edition IEEE press, New Delhi. 1998



Subject Code: BEC18E31	Su	ıbject N	Name :	Satellit	e Comi	nunica	tion		T / L/ ETL	L	T/SLr	P/R		
		erequisi		nmunic	ation T	heory,	Digital		Ту	3	0/0	0/0	3	
L : Lecture T : T/L/ETL : The		SLr : S mbedde				P : Proje	ect R:	Resear	ch C: C	credits		1		
OBJECTIVE		C .	111.	, .	1		.1 .	1						
•	Overview Study of						ther ter	restrial	system	S				
•							ompone	ents						
•		ady of earth segment and space segment components ady of satellite access by various users.												
•	Study of													
COURSE OU			:											
The students w														
CO1	Recogni	ze vario	ous elen	nent of	orbital	Mechai	nics							
CO2	Interpre	rpret various multiple access and switching techniques.												
CO3	Illustrate	strate the concepts involved in satellite link design												
CO4	Analyze	nalyze the principles, concepts and operation of satellite communication systems												
CO5	Examine	e the va	rious pr	ocess o	f earth	station	design.							
Mapping of C	ourse Ou	tcomes	with P	rogran	Outco	omes (F	POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	012	
CO1	3	2	3	3	3	2	-	-	-	-	1		1	
CO2	3	3	3	3	3	2	-	-	-	-	1		1	
CO3	3	3	3	3	3	2	-	-	-	_	1		1	
CO4	3	3	3	3	3	2	-	-	-	-	1		1	
CO5	3	3	3	3	3	2	1	-	-	- 1		DG O 4	1	
COs / PSOs		PSO:	<u> </u>		PS			P	SO3			PSO4		
CO1		3			2				1			1		
000					2			1				1		
CO2		2						1			1			
CO2 CO3 CO4		3			2				1			1		

Program Electives

Program Core

Open Electives

Basic Sciences

Category

Engineering Sciences

Humanities and Social Sciences Internships / Technical Skill

Soft Skills

Practical / Project



BEC18E31	SATELLITE COMMUNICATION	3 0/0 0/0 3

## UNIT I ELEMENTS OF ORBITAL MECHANICS

9 Hrs

Equation, Orbital Elements, Orbital Perturbation, Tracking and Orbital Determination, Orbital Correction Control.

## ELEMENTS OF COMMUNICATION SATELLITE DESIGN

Space Environment, Spacecraft Configuration, Spacecraft Subsystem, Payload, Reliability Consideration – Spacecraft Integration and Testing.

## UNIT II MULTIPLE ACCESS TECHNIQUES

9 Hrs

FDM – FM – FDMA, TDMA, SSMA / CDMA, RANDOM MULTIPLE Access Techniques; Packet Switching and Packet Satellite Networks Satellite on Board Processing and Switching.

## UNIT III SATELLITE LINK DESIGN

9 Hrs

Types of System: BSS, Performance Requirements and Standards for Telephony, TV and DATA, Performance Impairments, Noise, Interference, Inter modulation, Design of Typical Satellite Links.

## UNIT IV DOMESTIC SATELLITE SYSTEMS

9 Hrs

The INSAT System, International System, INTELSAT, IMMARSAT, Satellite Based Personal Communication LEO, ICO, GEO Systems.

## UNIT V EARTH STATION DESIGN

9 Hrs

Earth Station Configuration, Site Selection, Antenna and Tracking Systems, Receiver and Transmitter Subsystems, Terminal Equipment: Telephone / Video Interface, Rearward Links, Miscellaneous Facilities Like Echo Suppressor, FM Digitizers, Ground Station Measurements, Elements of Frequency Coordination and Control, VSAT Networks and Terminals – Satellite Broadcasting, Satellite TV Systems.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **Text books:**

- 1. T. Pratt and C.W. Bostian, "Satellite Communication" John Wiley & Son, 1986.
- 2. A. Abdul Namith, "Satellite Communication"-Lakshmi Publications.

#### **References:**

- 1. B.N. Agarwal, "Design of Geosynchronous Spacecraft" Prentice Hall, 1986.
- 2. D. Roddy, "Satellite Communication" Prentice Hall, 1989
- 3. M. Richharia, "Satellite Communication SystemsDesign Principles", Macmillan Press Ltd. Second Edition 2003.



Subject (	- dor	C1	signt No		monoti	ing Mol	.:la		-	Γ/L/	L	T/SLr	P/R	С									
Subject C BEC18E3			oject Na mmunio		perau	ing ivior	nie			ETL	L	1/SLI	r/K										
DEC10E.	32				tal Cor	nmunica	ation			<u>утт.</u> Гу	3	0/0	0/0	3									
L : Lectur	e T·							roject	R : Rese		_		0/0										
T/L/ETL							5 1 .1	roject	it . itost	ouren e	. Crear	LIS .											
OBJECT	IVES	<b>5:</b>																					
	•	To ma	ake the	student	s learn	the con	cepts o	f basic	cellular	comm	unicati	on											
	•	To lea	arn abou	it the v	arious	propaga	tion m	odels															
	•	To de	velop m	obile a	pplica	tions an	d desig	n a M2	2M comi	nunicat	ion												
COURSE	E OUT	ГСОМ	IES (CO	Os):(3	3- 5)																		
The Stude	Students will be able to																						
CO1	]	Describ	oe basic	wirele	ss syst	ems and	standa	ırds															
CO2	1	Discus	s cellula	r conc	epts in	designi	ng a mo	obile c	ommuni	cation s	ystem												
CO3	J	Explaii	n variou	s propa	agation	models	and m	ultipat	h fading	channe	els												
CO4	1	Apply	the OS	fundan	nentals	to deve	lop nati	ive app	olications	S													
CO5	1	Design	a M2M	comn	nunicat	ion for 1	atest IC	OS app	lications	;													
Mapping of Course Outcomes with Program Outcomes (POs)																							
COs/PO	)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO	)12									
CO1		3	3	3	3	1	2	1	1	1	1	1		2									
CO2		1	3	3	3	1	1	2	2	1	2	2		1									
CO3		3	1	3	1	2	1	1	1	2	1	2		1									
CO4		1	3	3	3	3	1	2	1	1	2	1		2									
CO5	10	2	3	3	3	3	2	1	2	2	1												
COs / PS	Os		PSO1			PSC	)2			03			SO4										
CO1			3			3				<u>2</u> 2			2 1										
CO2			3			3				<u>²                                    </u>			1										
CO4			3			2				2			2										
		1 3 1 3																					
CO5			1			3				l			J	ates Strength of Correlation 3- High, 2- Medium, 1-Low									
CO5	cates	Streng		orrela	tion		, 2- M	edium		l			<u>.,                                    </u>										
CO5		Strenge Sciences		and	Social Sciences		a, 2- Mo			Practical /	Project	Internships / Technical Skill		Soft Skills									



BEC18E32	OPERATING MOBILE COMMUNICATION	3	0/0	0/0 3	
					- 1

## UNIT I INTRODUCTION TO WIRELESS SYSTEMS AND STANDARDS 9Hrs

Introduction to wireless communication: Evolution of mobile communications, mobile radio systems-Examples, trends in cellular radio and personal communications. 2G, EDGE, 3G, 4G (LTE) and 5G, VoIP, Wi-Fi and Bluetooth, Wireless Networks and Standards, WLL, Blue tooth. AMPS, GSM, IS-95 and DECT

#### UNIT II CELLULAR CONCEPT AND SYSTEM DESIGN FUNDAMENTALS 9Hrs

Cellular Concept: Frequency reuse, channel assignment, hand off, Interference and system capacity, tracking and grade of service, Improving Coverage and capacity in Cellular systems.

## UNIT III MOBILE RADIO PROPAGATION

9Hrs

Free space propagation model, reflection, diffraction, scattering, link budget design, Outdoor Propagation models, Indoor propagation models, Small scale Multipath propagation, Impulse model, Small scale Multipath measurements, parameters of Mobile multipath channels, types of small scale fading, statistical models for multipath fading channels.

## UNIT IV OPERATING SYSTEM

9Hrs

Different OS Platforms - Windows, Android, iOS; Process for Software OS installation – Requirements for testing - Native applications – Secured environment

## **UNIT V M2M Communication**

9Hrs

Low Power and Battery Operated IOT Communication, Bluetooth Low Energy (BLE), Zigbee, Z-Wave, LoRa, Narrow Band-Internet Of Things(NB-IOT), Cat-M/LTE-M

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **TEXT BOOKS:**

- 1. T.S. Rappaport, "Wireless Communications: Principles and Practice, Second Edition, Pearson Education/ Prentice Hall of India, Third Indian Reprint 2003.
- 2. Arash Habibi Lashkari, Mohammadreza Moradhaseli," Mobile Operating Systems and Programming : Mobile Communications "VDM Verilog Dr. Müller (July 7, 2011),

- 1.R. Blake, "Wireless Communication Technology", Thomson Delmar, 2003.
- 2. W. C. Y. Lee, "Mobile Communications Engineering: Theory and applications, Second Edition, McGraw-Hill International, 1998.
- 3. Stephen G. Wilson, "Digital Modulation and Coding", Pearson Education, 2003.
- 4. https://www.iotforall.com/cellular-iot-explained-nb-iot-vs-lte-m/



## **ELECTIVE V – Electronics Stream**

Subject Co BEC18E33			bject N esign	Name :	Intro	duction	to ME	MS Sy	stem	T / L/ ETL	L	T/S	Lr	P/R	С
		Pr	erequisi	ite: Non	ie					Ту	3	0/0	0	0/0	3
L : Lecture							Project	R : R	esearch (	C: Credi	its				
T/L/ETL : 7		ab/Em	bedded	Theory	and L	ab									
• To		ne stude	ents to 1	earn the	basic	concept	s of MI	EMS d	esign and	l their a	pplic	cation	ıs		
COURSE															
The Students		•		( )											
CO1	Be f	familia	with c	oncepts	of M	EMS, ser	isors an	d fabr	icate tech	niques.					
CO2	To analyze different properties of MEMS, systems.														
CO3									ties of M	EMS.					
CO4	Тоа	analyze	and un	derstan	d diffe	rent issu	es relat	ed to d	lesign of	MEMS	circ	uit an	nd sys	stem.	
CO5	Wil	l be exp	osed to	the op	tical a	nd RF ba	sed MI	EMS sy	ystem.						
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/P	Os/POs   PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO				PO8	PO9	P	O10	PO	11	PO12				
CO1		1	3	3	1	3	1	1	1	1		1	1		2
CO2		3	1	3	3	1	1	1	1	1		1		1	2
CO3		3	1	3	3	1	1	1	1	1		1		1	1
CO ₄		3	1	3	1	3	1	1	1	1		1		1	2
CO		1	3	1	3	1	1	3	1	1		1	1 1 1		
COs / P			<b>PSO</b> 3	1			<b>O2</b>		1	<b>PSO3</b> 2			PSO4		
CO2			1				3			$\frac{2}{2}$			2		
CO3			3				3			2				2	
CO4			3				2			2				2	
COS			3				3			2				2	
3/2/1 indica	ates Stre	ength o	f Corre	lation	3- H	igh, 2- N	<b>Iediun</b>	, 1-Lo	w						
Category	Basic Sciences		Engineering Sciences	Humanities and Social	Sciences	Program Core Program Electives Open Electives Practical / Project		Program Electives Open Electives		Practical / Project		120001	Internships / Technical Skill		Soft Skills
					<b>✓</b>										



BEC18E33	INTRODUCTION TO MEMS SYSTEM DESIGN	3 0/0 0/0 3

## UNIT I INTRODUCTION TO MEMS

9Hrs

MEMS and Microsystems, Miniaturization, Typical products, Micro sensors, Micro actuation, MEMS with micro actuators, Micro accelerometers and Micro fluidics, MEMS materials, Micro fabrication

## UNIT II MECHANICS FOR MEMS DESIGN

9 Hrs

Elasticity, Stress, strain and material properties, Bending of thin plates, Spring configurations, torsional deflection, Mechanical vibration, Resonance, Thermo mechanics – actuators, force and response time, Fracture and thin film mechanics.

## UNIT III ELECTRO STATIC DESIGN

9Hrs

Electrostatics: basic theory, electro static instability. Surface tension, gap and finger pull up, Electro static actuators, Comb generators, gap closers, rotary motors, inch worms, Electromagnetic actuators. Bi stable actuators.

## UNIT IV CIRCUIT AND SYSTEM ISSUES

9Hrs

Electronic Interfaces, Feedback systems, Noise, Circuit and system issues, Case studies – Capacitive accelerometer, Piezo electric pressure sensor, Modeling of MEMS systems, CAD for MEMS.

## UNIT V INTRODUCTION TO OPTICAL AND RF MEMS

9 Hrs

Optical MEMS, - System design basics – Gaussian optics, matrix operations, resolution. Case studies, MEMS scanners and retinal scanning display, Digital Micro mirror devices. RF Memes – design basics, case study – Capacitive RF MEMS switch, performance issues.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOK:**

- 1. Stephen Santuria, "Microsystems Design", Kluwer publishers, 2000.
- 2. NadimMaluf, "An Introduction to Micro Electro Mechanical System Design", Artech House, 2000
- 3. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC pressBaco Raton, 2000.

## **References:**

- 1. Stephen Santuria, "Microsystems Design", Kluwer publishers, 2000.
- 2. NadimMaluf, "An Introduction to Micro Electro Mechanical System Design", Artech House, 2000
- 3. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC pressBaco Raton, 2000.
- 4. Tai Ran Hsu, "MEMS & Micro Systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.



Subject Co BEC18E34			ubject N C's	lame :	Analy	sis and I	)esign	of An	alog	T / L/ ETL	L	T/S	SLr	P/R	С	
			rerequisi itegrated			nd Implen	nentatio	n of I	Linear	Ту	3	0/	0	0/0	3	
L : Lecture	T : T	Tutorial	SLr : S	upervis	ed Le	arning P	: Projec	t R:	Research	n C: Cre	dits	•	<u> </u>		,	
T/L/ETL:	Theo	ry/Lab/E	mbedde	d Theor	y and	Lab										
<b>OBJECTI</b>																
	•	To enab	le the stu	idents to	o desi	gn and ar	alyze v	ariou	s analog	circuits	using	g op-a	amps	and I	C's	
COURSE	OUT	COME	S (COs)	: (3-5	)											
The Studen	ıts wi	ll be abl	e to													
CO1	K	now the	operatin	g princ	iple o	f linear IC	Cs.									
CO2						e of opera										
CO3					desig	n of anal	og mul	iplier	and PLI	٠.						
CO4		xamine l		<u>.</u>												
CO5		esign a s														
Mapping of Course Outcomes with Program Outcomes (POs)																
COs/PO	s	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	P	O10	PO ₁	11	PO12	
CO1		3	3	3	3	3	2	2	2	2		3	2		2	
CO2		3	3	3	3	3	3	2	2	3		2	2		1	
CO3		3	3	3	3	3	3	3	2	2		2	2		2	
CO4		3	3	3	3	3	2	3	3	1		2	2		2	
CO5		3	3	3	3	2	3	3	2	2		1	1		2	
COs / PS	Os		PSO1			PSO	2			<b>O3</b>			F	<b>PSO4</b>		
CO1			3			3								2		
CO2			3			3				2				2		
CO3			3			3				3				1		
CO4			3			3				2			2			
CO5		G. (1	3	<b>.</b>		3	3.6.31			2				1		
3/2/1 indic	ates \	Strength	of Cor	relation	1 3-	High, 2-	Mediu	m, 1-	Low							
Category	Basic	Sciences	Engineering Sciences	Humanities and Social	Sciences	Program Core	Program	Practical / Project Project Internships /		Technical	SKIII	Soft Skills				
			<b>✓</b>													



BEC18E34 ANALYSIS AND DESIGN OF ANALOG IC'S	3 0/0 0/0 3
---------------------------------------------	-------------

## UNIT I CIRCUIT CONFIGURATION FOR LINEAR IC

**13 Hrs** 

Current Sources, Analysis of Difference Amplifiers with Active load, Supply and Temperature Independent Biasing Technique Voltage References.

## UNIT II OPERATIONAL AMPLIFIERS

10 Hrs

Analysis of Operational Amplifier Circuits, Slew Rate Model and High Frequency Analysis, Operational Amplifier Noise Analysis.

## UNIT III ANALOG MULTIPLIER AND PLL

10 Hrs

Analysis of four Quadrant and Variable Trans-conductance Multiplier, Voltage Controlled Oscillator, Closed loop Analysis of PLL.

## UNIT IV MOS ANALOG ICS

6 Hrs

Design of MOS Operational Amplifier, MOS Power Amplifier.

## UNIT V MOS SWITCHED CAPACITOR FILTERS

6 Hrs

Design Techniques for Switched Capacitor Filter.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **Textbooks:**

- 1. BehazadRazavi, "Principles of Data Conversion System Design", S.Chand& Company Ltd, 2000.
- 2. Grey and Meyer, "Analysis and Design of Analog Ics." Wiley International, 1996.

## **References:**

- 1. Kenneth R. Laker, Willy M. C. Sansen, William M. C. Sansen, "Design of Analog Integrated Circuits and Systems", McGraw Hill, 1994
- 2. Grey, Wolley, Brodersen, "Analog MOS Integrated Circuits", IEEE Press, 1989.
- 3. Roy chowdhary, "Linear integrated circuit"



Subject C BEC18E3			Subj	ect Na	me: Cy	ber Ph	ysical (	System	1	T / L/ ETL	L	T/SLr	P/R	С
		Pro	erequisi	te: Non	ie					Ty	3	0/0	0/0	3
L : Lecture	e T : Tu	torial	SLr : S	upervis	ed Lea	rning F	: Proje	ect R:	Resear	ch C: C	redits	1		·
T/L/ETL:	Theory	/Lab/E	mbedde	d Theo	ry and	Lab								
OBJECT														
	make t				•		•		_					
	impler		-	•	•			contro	ol.					
	o develo	•	•			for CP	S.							
COURSE				: (3-5	5)									
The studer														
CO1						per phys		stem.						
CO ₂						ntrol sys	stem.							
CO3	3	Imple	ment CI	PS in co	ntrol s	ystem.								
CO4		Apply	formal	method	ls for s	afety of	CPS.							
CO5	5	Deploy	y secure	es envir	onmen	t for CP	S.							
Mapping	of Cou	rse Out	comes	with P	rogran	1 Outco	mes (I	POs)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 F	PO12
CO	1	3	1	3	3	1	1	2	1	1	1	1		2
CO2	2	1	3	3	3	3	1	1	1	2	1	1		1
CO3		3	1	3	3	1	1	1	2	1	1	2		1
CO		1	3	3	3									2
COS	5	1			2	1	1	1	1	1				
COs/P		1		-	1	1	1		1	1	1 2	1		1
	SOs	1	PSO1	-	1	1 <b>PS</b> (	1		1	1 SO3		1	PSO4	
CO	1	1	<b>PSO1</b> 3	-	1	1 <b>PS</b> (	1		1	1 SO3 2		1	1	
CO2	l 2	1	<b>PSO1</b> 3 1	-	1	1 <b>PSC</b> 3 3	1		1	1 <b>SO3</b> 2		1	1 2	
CO2 CO2	1 2 3	1	PSO1 3 1 3	-	1	1 PSC 3 3 1	1		1	1 SO3 2 1 2		1	1 2 3	
CO2 CO3 CO4	1 2 3 4	1	PSO1  3  1  3  1	-	1	1 PSC 3 3 1 3	1		1	1 SO3 2 1 2		1	1 2 3 2	
CO2 CO2	1 2 3 4		PSO1 3 1 3 1 3 1 3			1 PSO 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 )22	1	1 P:	1 SO3 2 1 2		1	1 2 3	
CO1 CO2 CO3 CO4 CO5	1 2 3 4	rength	PSO1 3 1 3 1 3 1 3	relatio		1 PSO 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 )22	1 	1 P:	1 803 2 1 2 1 2		1	1 2 3 2 2	



BEC18E35	CYBER PHYSICAL SYSTEM	3 0/0 0/0 3
		1

## UNIT I INTRODUCTION TO CPS

9 Hrs

Basic Principles of Design and validation – Industry 4.0 – IOT Implications – Processors, Sensors and Actuators – Wireless HART, CAN ,Automotive Ethernet-RTOS

## UNIT II AUTOMATED CONTROL DESIGN

9 Hrs

Dynamic System and Stability – Controller Design Techniques – CLFs, MLFs under slow switching - Performance under Packet drop and noise

## UNIT III CPS IMPLEMENTATION

9 Hrs

Mapping of features to software to ECUs –Effect of scheduling – Bus Latency – sense and actuation faults on control performance-network congestion-Control, Bus and Network Scheduling

## UNIT IV FORMAL METHODS FOR SAFETY

9 Hrs

Advanced Automata based Modeling and Analysis – Introduction, Timed and Hybrid Automata, Trajectories and zenoness, and formal analysis, CPS software—weakest Pre-conditions and bounded model checking

## UNIT V SECURE DEPLOYMENT

9 Hrs

Secure Task Mapping and Partitioning – State Estimation for attack detection – Case Study – Automated Lighting and AC control in green buildings

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOKS:**

- 1. Rajeev Alur, "Principles of Cyber Physical Systems", MIT Press@2015,ISBN:0262029111 9780262029117
- 2.Marwedel, Peter "Embedded System Design Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things" Springer ISBN 978-3-319-56045-8

- 1. Rolf Dreschler, Ulrich Kuhne, "Formal Modeling and Verification of Cyber Physical System",.
- 2. Dhanda P. Rawat, Joel JPC Rodrigues, Ivan Stoj Menovic"Cyber Physical Systems : From Theory to Practice", CRC Press,2016



Subject C BEC18E3		S	ubject N		T / L/ ETL	L	T/SL	r P/I	2	С					
	s	Ту	3	0/0	0	/0	3								
L : Lecture	e T : Tu	ıtorial	SLr:S	upervise	d Lea	rning P	: Projec	t R:	Research	C: Cre	dits				
T/L/ETL:		//Lab/E	Embedde	d Theory	and	Lab									
OBJECTI	IVES:														
	• T	`o intro	duce the	compon	ents	of digital	contro	l syste	em						
	• T	o provi	ide know	ledge or	n puls	se transfe	r functi	ons a	nd their a	nalysis					
	• T	o intro	duce stal	oility cor	ncept	s in discr	ete don	nain							
	• T	o educ	ate on tu	ning of l	PID c	ontroller	s in dis	crete	domain						
	• T	o intro	duce stat	e variab	le ana	alysis in d	liscrete	dom	ain						
COURSE	OUTO	COME	S (COs)	: (3-5)											
The Studen															
CO1	Ac	equire knowledge of digital control system concepts.													
CO2	Dis	Discuss the transient and steady state response of control system.													
CO3		Analyze stability of digital control system.													
CO4		Design digital controllers using appropriate compensation technique.													
CO5		Test the controllability and observability of a given system.													
Mapping									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
COs/Po		PO1	PO2		PO4		PO6	PO'	7 <b>PO8</b>	PO9	P	010	PO11	Т	PO12
CO1		3	3	3	2	2	2	1	1	3		2	2	<u> </u>	3
CO2		3	3	3	2	3	2	2	1	3		2	3		2
CO3		3	3	3	3	3	1	3	2	3		1	3		1
CO4		3	3	3	3	3	2	2	2	3		2	3		2
CO5		3	3	3	3	2	3	3	2	3		2	3		3
COs / PS			PSO1			PSO	2		PS	03		PSO4			
CO1			3			3	2			2					
CO2			3			3	2				3				
CO3			3			3			3				3		
CO4			3			3		3 3							
3/2/1 indic		trenoth		relation	3.	3 High, 2-	Medin	 m 1.	Low	)			3		
JI III			. 01 (01)		J		lvicuiu					1			
Category	Basic Sciences		Engineering Sciences	Humanities and Social	Sciences Program Core		Program	Electives	Open Electives	Practical /	Practical / Project		Internships / Technical Skill		Soft Skills
0	Bas		Щ	H 3		Ъ			OF			<u> </u>	Te		



BEC18E36	Digital Control System	3 0/0 0/0 3

## UNIT I INTRODUCTION

9 Hrs

Introduction to digital control – Sampling Process – Sample and Hold Circuit – Zero and First Order hold – Z-Transform – Inverse Z- Transform – Region of convergence – Initial and Final Value Theorem

## UNIT II PULSE TRANSFER FUNCTION AND TIME RESPONSE

9 Hrs

 $Block\ diagram\ reduction\ methods-Reduction\ Rules-\ Multi-loop-MIMO\ Systems-Signal\ Flow\ Graph-steady\ state\ error-error\ transfer\ functions-\ Error\ Constants-Time-Domain\ Analysis\ of\ Second\ Order\ Systems-Time\ Response$ 

## UNIT III STABILITY

9 Hrs

Introduction-Jury Stability Test- Schur-Cohn stability Test- Bilinear transformation- Stability by Pole Location — Root locus method- Bode Plot- Nyquist Plot.

## UNIT IV DIGITAL PID CONTROLLER

9 Hrs

Cascade Compensation- Digital Lag Lead Compensator by Bode method- Design of P,PI and PID Controller- Ziegler's- Nichols Method, Cohen-Coon Method

## UNIT V STATE SPACE ANALYSIS

9 Hrs

Realization of Pulse Transfer Function- Diagonalization- discretization of Continuous time systems State Transition Matrix- Solution of Discrete-time state equations- Controllability and Observability

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOKS:**

- 1. V. I. George and C. P. Kurien, Digital Control System, Cengage Learning, 2012.
- 2. B. C. Kuo, Digital Control System, 2nd Edition, Oxford University Press, 2010.
- 3. M. SamiFadali, Antonio Visioli, Digital Control Engineering Analysis and Design, Academic Press, 2013.

- 1. M. Gopal, 'Digital Control and State Variable Methods', Tata McGraw Hill, 3rd Edition, 2009.
- 2. C.M. Houpis, G. B. Lamount, 'Digital Control Systems- Theory, Hardware, Software', International Student Edition, McGraw Hill Book Co., 1985.
- 3. Kannan M. Moddgalya, Digital Control, Wiley India, 2007.
- 4. C. L. Philips and J. M. Pan, "Feedback Control System, Pearson, 2013.



# **ELECTIVE V – Communication Stream**

Subject Co BEC18E3			bject N mpati	Name : E	lectro	magnet	L		L	T/SLr	P/R	С				
				ite: Elect		netic wa	aves an	Т	У	3	0/0	0/0	3			
L : Lecture	T: Tutor			pervised		ng P:	Project	R : ]	Research	C: C	Credit	S		1		
T/L/ETL:	Theory/L															
OBJECTI																
	understa			es, EMI _l	proble	ms and	their so	lutio	n method	ls in	PCB	level	/ Subsy	stem a	and	
•	stem level	_								_						
	measure	the emi	ssion I	mmunity	level	from di	fferent	syste	ems to co	uple	with	the p	rescribe	ed EM	C	
	ndards	MEG	<u> </u>	(2.5)												
COURSE		,		(3-5)												
The Studer																
CO1		Remember the sources of EMI and its standards														
CO2		Understand the coupling principles in EMI														
CO3	Test	Test the EMI measurements and its calibration														
CO4	Inter	Interpret the control and isolation of various parts of EMI														
CO5	Desi	ign PCI	Bs for v	arious a	plicat	ions in	EMI co	ntrol								
Mapping																
COs/POs		PO1	PO2		PO4	PO5	PO6	PO	7 PO	3 ]	PO9	PO	10 P	O11	PO12	
CO	1	1	1	1	2	1	2	2	3		1	2	,	1	3	
CO		3	2	1	2	2	2	2			1	3		1	2	
CO	3	2	2	3	2	2	3	2	3		2	3	1	3	2	
CO	4	1	2	3	3	3	2	2	2		1	3	1	2	2	
CO	5	2	2	3	2 2		2	2	2		2	2	?	1	2	
COs / I	<b>PSOs</b>		PSO1			PSO2 PS					3		PSO4			
CO			1			2							2			
CO			2			3							2			
CO			2		3								2			
CO			2 3							2 1						
CO		47. 4	2	T	<u> </u>	2		4 7		2				2		
3/2/1 indic	ates Stre	ngth of	Corre	elation	3- Hig	gh, 2- M	ledium	, 1-L	ow							
Category	Basic Sciences	Basic Sciences Engineering Sciences Humanities and Social		Sciences	Program Core		Program Electives Open Electives			Practical / Project		Internships / Technical Skill		Soft Skills		



## UNIT I EMI ENVIRONMENT

9 Hrs

Sources of EMI, Conducted and Radiated EMI, Transient EMI, EMI-EMC Definitions and Units of Parameters. Units of Specification, Civilian Standards Military Standards.

## UNIT II EMI COUPLING PRINCIPLES

9 Hrs

Conducted, Radiated and Transient Coupling, Common Impedance Ground Coupling, Radiated Common Mode and Ground Loop Coupling, and Radiated Differential Mode Coupling, Near Field Cable to Cable Coupling, Power Mains and Power Supply Coupling.

#### UNIT III EMI MEASUREMENTS

9 Hrs

EMI Test Instruments Systems. EMI Test, EMI Shielded Chamber, Open Area Test Site, TEM Cell Antennas, Conductors Sensors / Injectors / Couplers. Military Test Method and Procedures, Calibration Procedures.

## UNIT IV EMICONTROL TECHINQUES

9 Hrs

Shielding, Filtering, Grounding, Bonding, Isolation Transformer, Transient Suppressors, Cable Routing, Signal Control, Component Selection and Mounting.

## UNIT V EMI DESIGN OF PCBs

9 Hrs

PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning Motherboard Design and Propagation Delay Performance Models.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

## **TEXT BOOKS:**

- 1. V.P. Kodali, "Engineering EMC Principles, Measurements and Technologies", IEEE Press, 1996.
- 2. Clayton R. Paul Introduction to Electromagnetic compatibility Wiley & Sons 1992

- 1. Bernhard Keiser. Principles of Electromagnetic Compatibility", Artech House, #rd Ed, 1986.
- 2. Henry W. Ott, "Noise Reduction Techniques in Electronic Systems", John Wiley and Sons, Newyork, 1988.

Subject Code: BEC18E38			Subject Name: Advanced Concepts in Signal Processing									T/SI	r P/I	2	С			
		Pı	erequisi	te: Dig	ital Sig	nal Proc	essing			Ty	3	0/0	0	/0	3			
L : Lecture	e T : Tu	ıtorial	SLr: S	upervis	ed Lear	ning P	: Projec	t R:	Research	C: Cre	dits		•		•			
T/L/ETL:		y/Lab/E	mbedde	d Theor	y and I	Lab												
OBJECT																		
			-			_			ed to rando	•	•	ocessi	ng.					
• Th	ne stude	ent knov	vs estim	ation, p	rediction	on and f	iltering	conce	epts & tec	hnique	S.							
COURSE	OUTO	COMES	S (COs)	: (3-5	)													
The Studen	nts will	be able	to	,														
CO1	CO1 Study the basics of random signal processing.																	
CO2		earn different types of spectrum estimators & their models.																
CO3		nderstand the concept of predictive filters.																
CO4	De	esign different types of adaptive filters.																
CO5				_	_			on of	filter ban	ζS.								
Mapping																		
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO8	PO9	P	010	PO11	]	PO12			
CO1		3	3	2	3	3	3	2	2	3		2	3		1			
CO2		3	3	3	3	3	3	3	2	3		1	1		2			
CO3		3	3	3	2	3	3	3	3	2		3	2		2			
CO4		3	3	3	3	3	2	2	3	2		3	3	_	2			
CO ₂ / PC		3			3	3 3 2 3 PSO2				3 3 PSO3			3 3 3					
COs / PS			<b>PSO1</b> 3				3		<b>PSO4</b> 2									
CO2			3			3				2		3						
CO3			3			3				3			3					
CO4			3			3				3			3					
CO5			3			3			(	3			3					
3/2/1 indic	cates S	trength	of Cor	relatior	3- H	ligh, 2-	Mediu	m, 1-	Low									
Category Basic Sciences		Sciences	Engineering Sciences	Humanities and Social	Sciences			Program Electives Open Electives		Practical /	Practical / Project		Internships / Technical Skill		Soft Skills			



BEC18E38	ADVANCED CONCEPTS IN SIGNAL PROCESSING	3 0/0	0/0	3

#### UNIT I DISCRETE RANDOM SIGNAL PROCESSING

9 Hrs

Discrete Random Process, Expectation, Variance, Co-Variance, Scalar Product, Energy of Discrete Signal Parseval's Theorem, Wiener Khintchine Relation-Power Spectral Density –Periodogram – Sample Autocorrelation Sum Decomposition Theorem, Spectral Factorization Theorem – Discrete Random Signal Processing by Linear Systems-Simulation of White Noise – Low Pass Filtering of White Noise.

#### UNIT II SPECTRUM ESTIMATION

9 Hrs

Non-Parametric Methods-Correlation Method – Co-Variance Estimator – Performance Analysis of Estimators – Unbiased, Consistent Estimators – Periodogram Estimator – Barlett Spectrum Estimation – Welch Estimation – Model based Approach – AR, MA, ARMA Signal Modeling – Parameter Estimation using Yule-Walker Method.

#### UNIT III LINEAR ESTIMATION AND PREDICTION

9 Hrs

Maximum likelihood criterion-efficiency f estimator – Least mean squared error criterion – Wiener filter – Discrete Wiener Hoff equations – Recursive estimators-Kalman filter – Linear prediction, prediction error-whitening filter, inverse filter – Levinson recursion, Lattice realization, and Levinson recursion algorithm for solving Toeplitz system of equations.

#### UNIT IV ADAPTIVE FILTERS

9 Hrs

FIR adaptive filters – Newton's steepest descent method-adaptive filter based on steepest descent method – Widrow Hoff LMS adaptive algorithm – Adaptive channel equalizations – Adaptive echo chancellor – Adaptive noise cancellation – RLS adaptive filters –Exponentially weighted RLS – sliding window RLS – Simplified IIR LMs adaptive filter

### UNIT V MULTIRATE DIGITAL SIGNAL PROCESSING

9 Hrs

Mathematical description of change of sampling rate – Interpolation and Decimation –continuous time model – Direct digital domain approach -Decimation by an integer factor – Interpolation by an integer factor – single and multistage realization - Poly phase realization – Application to sub-band coding – Wavelet transform and filter bank implementation of wavelet expansion of signals.

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **Text books:**

- 1. Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons, Inc., New York, 1996
- 2. Sopocles J. Orfanidis, "Optimum Signal Processing", McGraw Hill, 1990.

#### References:

- 1. Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons, Inc., New York, 1996
- 2. Sopocles J. Orfanidis, "Optimum Signal Processing", McGraw Hill, 1990. .
- 3. John G. Proakis, Dimitris G. Manolais, "Digital Signal Processing", Prentice Hall of India, 1995

B.Tech ECE 2018 Regulation(Revised)



Subject Code: BEC18E39	Subject Name: Ultra Wide Band Communication	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: Digital Communication	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVES:**

- To learn the basic operation of UWB system
- To design a UWB transmitter and receiver
- To study about the characteristics of UWB antennas

The	students	will	he	able to	`
1110	students	VV 111	$\nu$	aute to	,

CO1	Understand the operation of Ultra-Wide Band Systems
CO2	Learn the properties of UWB antennas
CO3	Design a UWB transmitter
CO4	Design a UWB receiver
CO5	Develop a multi-carrier UWB receiver

### **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	3	2	1	3	2	1	3	2	3
CO2	1	1	3	2	2	1	2	3	1	3	3	3
CO3	3	3	3	3	2	1	2	1	1	3	2	2
CO4	3	3	3	3	2	1	2	1	1	1	1	1
CO5	3	3	3	3	3	1	2	3	3	1	1	1

CO3	5	J	5	5	5	1		5	5	1	1	1	
COs / PSOs	PSO1				PSO2			PSO3			PSO4		
CO1	1				3			2			2		
CO2	1				3			3			2		
CO3	2				3			1			1		
CO4	2				3			1			2		
CO5	1				3			2			2		

## 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
					✓				



BEC18E39	ULTRA WIDE BAND COMMUNICATION	3 0/0 0/0 3

#### UNIT I INTRODUCTION TO UWB SYSTEMS

9 Hrs

Overview of UWB - UWB Concept - UWB Signals: Impulse (I) and Multi-Carrier (MC) Signals, Uniqueness of UWB Systems; I-UWB System Model; MC-UWB System Model. Advantages of UWB Systems - Challenges in UWB Systems - Single Band Vs. Multi Band - Applications of UWB Systems - Regulatory, Legal & Other Controversial Issues.

#### UNIT II INTERFERENCE, COEXISTENCE & UWB ANTENNAS

9 Hrs

Interference of UWB on NB: UWB Pulse Model - Effect of NB Receive Filter - BER Analysis - Time-Hopped Case - Aggregate of UWB Interference Modeling: Received Power - Asymptotic PDF of Aggregate Noise - Amplitudes: Aggregated PDF - Bernoulli and Poisson Models - Interference Analysis: NB on UWB, UWB on UWB - Basic Properties of UWB Antennas.

#### UNIT III UWB TRANSMITTER DESIGN

9 Hrs

IUWB Signal Generators: Avalanche Pulse Generators - Step Recovery Diode Pulse Generators- Tunnel Diode Pulsars - Pulse Circuits Suitable for Integrated Circuits — Modulators- I-UWB Transmitters: TH-PPM and TH(A-PAM) UWB Signals - OOC-PPM UWB Signals - DSUWB Signals - TR UWB System-MC-UWB Transmitters: CI-UWB Signals - FH-UWB Systems - OFDM-UWB Systems - Spectral Encoded UWB Communication System.

#### UNIT IV IUWB RECEIVER DESIGN

9 Hrs

System Model- Threshold/Leading Edge Detection - Correlation Detection (CD) Receivers - RAKE Receivers - Multi-User Detection (MUD) UWB Receivers- Hybrid RAKE IMUD Receivers - Auto Correlation TR UWB Receivers- Synchronization and Timing Issues - Digital I-UWB Implementation.

### UNIT V MC - UWB RECEIVER DESIGN

9 Hr

I Carrier Interferometry (CI) UWB Receivers- Frequency Hopped (FH) UWB Receivers - OFDM - UWB Receivers - Spectral Encoded UWB Communication System - Methods of Improving Range of UWB using RAKE Receivers - Overview of UWB Simulation techniques.

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **Text books:**

- 7. Jeffrey H. Reed, "An Introduction to UWB Communication Systems, Prentice Hall, 2005.
- **8.** Robert Aiello and Anuj Batra, "UWB Systems: Technologies and Applications", Newnes-Elsevier, 2006.
- **9.** Faranak Nekoogar, "UWB Communications: Fundamentals and Applications", Prentice Hall, 2005.

#### **References:**

- 1. Ultra Wideband Antennas: Design, Methodologies, and Performance BY (Author), Marco Antonio Peyrot-Solis (Author), Hildeberto Jardón Aguilar
- 2. Design of CMOS RFIC Ultra-Wideband Impulse Transmitters and Receivers Book by Cam Nguyen and Meng Miao
- 3. Ultra-Wideband Antennas and Propagation: For Communications, Radar and Imaging 1st Edition by Ben Allen (Editor), Mischa Dohler (Editor), Ernest Okon (Editor), Wasim Malik (Editor), Anthony Brown (Editor), David Edwards

B.Tech ECE 2018 Regulation(Revised)



<b>Subject Code:</b>	Subject Name: Under Water Acoustic Signal	T/L/	L	T/SLr	P/R	С
BEC18E40	Processing	ETL				
	Prerequisite: Digital Signal Processing	Ту	3	0/0	0/0	3

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits$ 

T/L/ETL: Theory/Lab/Embedded Theory and Lab

### **OBJECTIVES:**

- To learn the basic operation of Under Water Acoustics
- To study the characteristics of SONAR System
- To apply the principles of signal processing for practical solutions

# **COURSE OUTCOMES (COs): (3-5)**

The Students will be able to

CO1	Analyze the propagation of sound in water
CO2	Discuss the source and characteristic of Ambient noise in sea.
CO3	Evaluate the noise, resolution and bandwidth of a signal under water
CO4	Analyze the characteristic of sonar systems for detecting submarines
CO5	Perceive the architecture of ADSP 218x and TMS 320c541x

### **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	3	3	3	2	2	2	3	
CO2	3	3	3	3	3	3	3	3	2	2	2	3	
CO3	3	3	3	3	3	3	3	3	2	2	2	3	
CO4	3	3	3	3	3	3	3	3	2	2	2	3	
CO5	3	1	1	1	1	1	1	1	1	1	1	1	
COs / PSOs	Os PSO1				PSO2			PSO3			PSO4		

COS	3 1 1	1   1   1   1		1 1
COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3
CO2	3	3	3	3
CO3	3	3	3	3
CO4	3	3	3	3
CO5	1	1	3	3

### 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
					✓				



BEC18E40	UNDERWATER ACOUSTIC SIGNAL PROCESSING	3 0/0 0/0 3

#### UNIT I FUNDAMENTALS OF UNDERWATER ACOUSTICS

9 Hrs

The Ocean acoustic environment, measuring sound level, Sources and receivers, relevant units, sound velocity in sea water, typical vertical profiles of sound velocity, Sound propagation in the Ocean-characteristic sound propagation paths-deep water and shallow water, Range dependent environment. Sound attenuation in sea water, Bottom Loss, Surface bottom and volume scattering, Snell's law for range dependent ocean.

#### UNIT II AMBIENT NOISE IN THE SEA

9 Hrs

Sources of ambient noise-introduction, different frequency bands of ambient noise, process of surface noise generation, shallow water, variability of ambient noise, spatial coherence of ambient noise, directional characteristics of ambient noise, intermittent sources of noise-biological & non biological (rain, earthquakes, explosions and volcanoes).

### UNIT III SIGNALS, FILTERS AND RANDOM FUNCTIONS

9 Hrs

Fourier representations, filters and noise, digital filter design techniques, temporal resolution and bandwidth of signals, signal to noise power ratio, Estimates of auto-covariance, power spectrum, cross covariance and cross spectrum.

#### UNIT IV CHARACTERISTICS OF SONAR SYSTEMS

9 Hrs

Sonar systems, active and passive sonar equations, transducers and their directivities, Sensor array characteristics-array gain, receiving directivity index, beam patterns, shading and super directivity, adaptive beam forming.

### UNIT V DSP PROCESSORS

9 Hrs

Architecture of ADSP 218x, Architecture of TMS 320C541X.

#### **CASE STUDY:**

- 1. Signal processing of ocean ambient noise data.
- 2. Beam forming of vertical linear array data.

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **TEXT BOOKS:**

- 1. Principles of Underwater Sound by Robert J Urick
- 2. Acoustical Oceanography: Principles and Applications by Clay & Medwin

### **REFERENCES:**

- 1. Ambient noise in the sea by Robert J. Urick
- 2. Fundamental of ocean acoustics by L. M. Brekhovskikh and Yu. P. Lysanov
- 3. Sonar signal processing by Richard O. Nielsen 6. DAP processor manuals.



# COMMON ELECTIVE FOR BOTH STREAMS

Subject Co	de:	Subje	ct Na	ame : S	Sensor	s and it	s Appl	lication		T / L/	L	T/SLr	P/R	. C
BEC18CE1	1									ETL				
		Prereq	•							Ty	3	0/0	0/	0 3
L: Lecture T/L/ETL: T				•		_	P : Pro	ject R	: Resea	rch C:	Credits	S		
OBJECTIV	•				<i>J</i>									
		Γo equ	ip th	ne stud	lents w	vith fun	damer	ntals o	f sensoi	rs, type	es, cha	racteris	tics,	
	ŗ	ropert	ties a	and its	applio	cations.				• •				
COURSE (	OUTCO	MES (	COs	):(3-	5)									
The Student				, . ( &	υ,									
CO1	El	aborat	e the	e conc	epts o	f senso	r and i	ts chai	acteris	tics				
CO2	Int	erpret	the	sensor	prope	rties ar	nd prin	ciples	sensor	S				
CO3	Dis	stingui	ish tl	he wo	rking o	of diffe	rent ty	pes of	sensor	S				
CO4	An	alyze	and	imple	ment s	ensors	in div	erse ne	etworks					
CO5									applica					
Mapping of														
COs/POs	s PO	1 PC	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12
CO1	3	3	3	2	3	2	2	-	-	-	-	2		3
CO2	3	3	3	2	3				-			2		3
CO3	3		2	2	3	3	3	2	-	-	-	3		3
CO4	3		2	2	3	3	3	2	-	-	-	3		3
CO5	3		2	2	3	3	2	2		-		2	700	3
COs / PSO	)s	P	SO1			PSO			P	SO3			PSO	94
CO1 CO2			3			3				2			2	
CO2			3			3				2			3	
CO4			3			3				2			2	
CO5			3			3				2			3	
3/2/1 indica	ites Strei	ngth of	f Cor	relati	on 3-	High,	2- Med	lium, 1	-Low					
Category	Basic Sciences													
							✓							



BEC18CE1 SENSOR AND ITS APPLICATIONS	3 0/0 0/0 3
--------------------------------------	-------------

#### UNIT I SENSOR FUNDAMENTALS AND CHARACTERISTICS 9 Hrs

Basic Sensor Technology - Sensor Systems - Sensor Characteristics - Signals, and Systems - Sensor Classification - Transfer Function - Span (Full-Scale Input) - Full-Scale Output - Accuracy - Calibration - Calibration Error - Hysteresis - Nonlinearity - Saturation

#### UNIT II SENSOR PROPERTIES AND PRINCIPLES

9 Hrs

Repeatability - Dead Band - Resolution - Special Properties - Output Impedance - Excitation .- Dynamic Characteristics - Environmental Factors - Reliability- Electric Charges, Fields, and Potentials - Capacitance - Magnetism - Induction - Resistance - Piezoelectric Effect- Mechanical Elements - Thermal Elements - Electrical Elements - Application Characteristic - Uncertainty

#### UNIT III NANO SENSORS

9 Hrs

Temperature Sensors, Smoke Sensors, Sensors for aerospace and defense: Accelerometer, Pressure Sensor, Night Vision System, Nano tweezers, Nano-cutting tools, Integration of sensor with actuators and electronic circuitry Biosensors.

#### UNIT IV SYSTEM AND SENSOR NETWORKS

9 Hrs

Measurement Techniques to Improve the Accuracy of Smart Sensor Systems Implementation of Neural Net in Continuous Analog Circuitry A Demonstration System for a New Time-Triggered Sensor Network

#### UNIT V APPLICATIONS

9 Hrs

Mobility Monitoring Using Mobile Telephony A Combined Sensor Incorporating Real-Time DSP for the Imaging of Concrete Reinforcement and Corrosion Visualization, Optimization of Erbium-Doped Fiber Lasers and Their Sensor Applications The Development of a Robust, Autonomous Sensor Network Platform for Environmental Monitoring

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### Text Books:

- 1. Jacob Fraden, "Handbook Of Modern Sensors Physics, Designs, And Applications"
- 2. Jon S. Wilson," Sensor Technology Handbook
- 3. S J Prosser, E. Lewis," Sensor and their Applications XII" CRC Press

#### **References:**

- 1. Ian Sinclair, "Sensors and Transducers" eBook ISBN: 9780080516998
- 2. Hardcover ISBN: 9780750649322Kourosh Kalantar Zadeh, Benjamin Fry, "Nanotechnology-
- 3. Enabled Sensors", Springer,
- 4. H. Rosemary Taylor, "Data acquisition for sensor systems", Chapman & Hall, 1997.
- 5. Ramon Pallas-Areny, John G. Webster, "Sensors and signal conditioning" John Wiley & Sons, 2001.
- 6. Vijay. K. Varadan, Linfeng Chen, Sivathanupillai, "Nanotechnology Engineering in Nano and Biomedicine", John Wiley & Sons, 2010.



Subject C BEC18CE			bject l	Name:	Crypto	graph	y And I	Vet	tworl		Γ / L/ ETL	L	T/SLr	P/R	С
				ite: Co	mputer	Comn	nunicatio	n			Гу	3	0/0	0/0	3
L: Lecture						g P : F	Project l	₹:	Rese	arch C:	Credits	S			
T/L/ETL:		ab/Embec	dded Tl	neory a	nd Lab										
OBJECTI															
	study the				algorith	ıms, fii	rewall.								
	•	egrity, Authentication. out wireless network security concepts.													
COURSE	•			VOIK SC	urity C	опсері	.5.								
The studen		`	<i>J</i> 3) •												
CO1		entify diff	ferent t	ypes of	attacks	secur	ed infor	mat	tion t	ransmi	ssion.				
CO2	Er	ncrypt and	decry	pt mess	ages us	ing dif	fferent c	ryp	otogra	aphic.					
CO3	Ve	erify mess	sage us	ing dig	ital sign	nature a	and man	age	e sec	ret key.					
CO4	Н	lave a clea	ar knov	vledge (	on netw	ork se	curity, v	veb	secu	ırity an	d firewa	ılls.			
CO5	Te	est and ide	entify t	he vario	ous secu	ırity at	tack issu	ıes	in w	rireless	systems				
Mapping	of Course	Outcom	es with	Progr	am Ou	tcome	s (POs)								
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P	<b>PO7</b>	PO8	PO9	PO1	0 PO1	1 PC	012
CO		3	3	3	3	3	2		-	-	-	1	-		2
CO		3	3	3	3	3	2		-	-	-	1	-		2
CO		3	3	3	3	3	2		-	-	-	1	-		2
CO		3	3	3	3	3	2 2		-	-	-	1	-		2
COs / I			SO1	3	3	PSO		T	-	PSC	-  3		PS		
								_							
СО			3 2					3							
CO			3			3				2				3	
CO	3		3			3				2			-	3	
CO	4		3			3				2			3	3	
CO	5		3			3				2			-	3	
3/2/1 indic	ates Stre	ngth of C	orrela	tion 3	3- High	, 2- M	edium,	1-I	Low						
Category	Basic Sciences	Engineering	Sciences	rumanities and Social Sciences		Program Core	Program Electives		200	Open Electives	Practical /		Internships / Technical Skill	5	Soft Skills
						_	✓								—



BEC18CE2	CRYPTOGRAPHY AND NETWORK SECURITY	3 0/0 0/0 3

#### UNIT I INTRODUCTION ON SECURITY

9 Hrs

Security Goals, Types of Attacks: Passive attack, active attack, attacks on confidentiality, attacks on Integrity and availability. Security services and mechanisms, Techniques: Cryptography, Steganography, Revision on Mathematics for Cryptography.

#### UNIT II SYMMETRIC & ASYMMETRIC KEY ALGORITHMS

9 Hrs

Substitution Ciphers, Transposition Ciphers, Stream and Block Ciphers, Data Encryption Standards (DES), Advanced Encryption Standard (AES), RC4, Principle of asymmetric key algorithms, RSA Key distribution.

#### UNIT III INTEGRITY, AUTHENTICATION AND KEY MANAGEMEN

9 Hrs

Message Integrity, Hash functions: SHA, Digital signatures: Digital signature standards. Authentication Entity Authentication: Biometrics, Key management Techniques, Introduction to Quantum Cryptography.

### UNIT IV NETWORK SECURITY, FIREWALLS AND WEB SECURITY

9 Hrs

Introduction on Firewalls, Types of Firewalls, Firewall Configuration and Limitation of Firewall. IP Security Overview, IP security Architecture, authentication Header, Security payload, security associations, Key Management. Web security requirement, secure sockets layer, transport layer security, secure electronic transaction, dual signature

#### UNIT V WIRELESS NETWORK SECURITY

9 Hrs

Security Attack issues specific to Wireless systems: Worm hole, Tunneling, DoS WEP for Wi-Fi network, Security for 4G networks: Secure Ad hoc Network, Secure Sensor Network

Practical component P: Include case studies / application scenarios

#### Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **Text Books:**

- 1. Behrouz A. Fourouzan, "Cryptography and Network security" Tata McGraw-Hill, 2008
- 2. William Stallings, "Cryptography and Network security: principles and practice", 2nd Edition, Prentice Hall of India, New Delhi, 2002
- 3. Atul Kahate, "Cryptography and Network security", 2nd Edition, Tata McGraw-Hill, 2008

#### **References:**

- 1. R. K. Nichols and P.C. Lekkas, ""Wireless Security", Mc Graw-Hill Professional, New York, NY, USA, 2001
- 2. H. Yang et al., "Security in Mobile Ad Hoc Networks: Challenges and Solution", IEEE Wireless Communications, Feb. 2004.
- 3. Securing Ad Hoc Networks, IEEE Network Magazine, vol. 13, no. 6, pp. 24-30, December 1999.



# LAB BASED ON ELECTIVES

Subject C BEC18L1		Subject Name: Microprocessor and T / L T Microcontroller Lab L/ ETL										T/SLr	P/R	С
		Pro	erequisi	te: Digi	tal sy	stem Des	sign La	.b		Lb	0	0/0	3/0	1
		ntorial SLr: Supervised Learning P: Project R: Research C: Credits  //Lab/Embedded Theory and Lab												
OBJECT	IVE:													
	To introduce the basic concepts of microprocessor and to develop students in the assembly language programming skills, applications of microprocessor and microcontroller													
COURSE				: (3-5	5)									
The Studen														
CO1						ge progra				1 8086	micro	process	or	
CO2	2	Inter	face per	riphera	ls wi	th 8086	micro	proces	sor					
CO3	3	Unde	rstand	the 805	51 AI	LP and	impler	nent st	tepper i	notor (	control	using t	he cond	cepts.
Mapping	of Cour	se Out	comes	with P	rogra	m Outco	mes (I	POs)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 I	PO12
CO1	L	2	3	3	3	3	2	-	-	-	-	-		1
CO2		2	3	3	3	3	2	-	-	-	-	-		1
CO3		2	3	3	3	3	2	-	-	-	-	-		1
COs/P	SOs		PSO ₁			PSC	)2		I	PSO3			PSO4	
CO1			1			3				2			2	
CO2			1			3				2			2	
CO3		41	1	1 4.		3		1.7		2			2	
3/2/1 indic	cates St	rength	of Cor	relatio	n 3-	High,2-	Medii	ım,1-L	<b>LOW</b>				1	
Category	Basic Sciences							Soft Skills						
										✓				



BEC18L14	Microprocessor and Microcontroller Lab	0	0/0	3/0	1	
----------	----------------------------------------	---	-----	-----	---	--

### 8086 MICROPROCESSOR:

- 1. BASIC ARITHMETIC AND LOGICAL OPERATIONS (8085 & 8086)
- 2. AVERAGE OF N NUMBERS
- 3. SORTING AND SEARCHING
- 4. SQUARE AND SQUARE ROOT OF A GIVEN NUMBER
- 5. CODE CONVERSION
- 6. BLOCK MOVEMENT OF DATA

### **INTERFACING WITH 8086 MICROPROCESSOR:**

- 1. WAVE FORM GENERATION USING 8255 PPI
- 2. KEYBOARD AND DISPLAY INTERFACE
- 3. MATRIX DISPLAY
- 4. TRAFFIC LIGHT CONTROLLER
- 5. ADC AND DAC INTERFACING
- 6. SERIAL PORT COMMUNICATION

### 8051 MICROCONTROLLER

- 1. BASIC ARITHMETIC AND LOGICAL OPERATIONS
- 2. SQUARE AND SQUARE ROOT OF A GIVEN NUMBER
- 3. 2'S COMPLEMENT OF A GIVEN NUMBER
- 4. AVERAGE OF N NUMBERS
- 5. STEPPER MOTOR CONTROL

Total no. of hours: 45

#### **References:**

Subject Coo BEC18L15	le:	Subject N	Name :	Basics	Of Rob	otics I	ab		T / L/ ETL	L	T/SL	r P/R		С
		Prerequis	ite: Nor	ne					Lb	0	0/0	) 3/	0	1
L : Lecture						: Projec	ct R:	Research	C: Cre	edits				
T/L/ETL: T		b/Embedde	d Theor	y and I	_ab									
OBJECTIV														
• To ı	ınderstand	d the differe	ent robo	tic conf	figuratio	ons and	their	subsyster	ns.					
COURSE C	OUTCOM	IES (COs)	: (3-5)	)										
The Student														
CO1	Identify	y the config	uration	s of var	rious typ	es of re	obots.							
CO2	Unders	tanding the	compo	nents o	f robots	like ar	ms, li	nkages, d	rive sys	stem	s and e	nd effec	ctors.	
CO3	Measur	e the perfor	rmance	of robo	ots.									
Mapping of	ng of Course Outcomes with Program Outcomes (POs)													
COs/POs	PC	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 I	PO10	PO11	PO	<b>D12</b>
CO1	2	2	3	3	3	2	2	3	2		2	3		3
CO2	3	3	3	3	3	2	2	3	3		3	3		3
CO3	3	3	3	3	3	3	2	3	3		3	3		3
COs / PSC	)s	PSO1			PSO2	2		PSC	)3			PSO	4	
CO1		3			3			3				3		
CO2		3			3			3				3		
CO3	4 64	3	214	2	3	37 11		3				3		
3/2/1 indica	tes Stren	gth of Cori	rseiauo	n 3-	High, 2	- Mear	um, 1	-Low	1		1			
Category	Basic Sciences													

BEC18L15 BASICS OF ROBOTICS LAB	0 0/0 3/0 1
---------------------------------	-------------

- 1. SIMPLE ROBOT CIRCUIT
- 2. BUILD A LIGHT-TRACKING ROBOT
- 3. SIMPLE INSECT ROBOT
- 4. LINE FOLLOWER ROBOT
- 5. TWO-LEGGED WALKING ROBOT
- 6. ROBOT CONTROL USING 555 TIMER
- 7. INTERFACING SWITCH TO TURN ON BAR GRAPH LEDS. (IMPLEMENTING A "PUSH TO ON" INDICATOR)
- 8. LCD INTERFACING TO DISPLAY ALPHANUMERIC CHARACTERS.
- 9. LCD INTERFACING TO DISPLAYING INTEGER VALUES ON THE LCD.
- 10. GENERATION OF DELAY USING TIMER AND TURNING 'ON' THE BUZZER
- 11. INDICATION OF THE VALUE OF COUNTER ON LCD
- 12. DC MOTOR INTERFACING

Total no. of hours: 45

#### **References:**



Subject Code: BEC18L16	Subject Name: C++ AND DATA STRUCTURES LAB	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: C Programming and lab	Lb	0	0/0	3/0	1

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ T/L/ETL: Theory/Lab/Embedded Theory and Lab$ 

### **OBJECTIVES:**

- To implement different oops concepts practically.
- To implement stacks and queues programmatically.
- To implement different types of linked lists.
- To implement different tree concepts.
- To perform sorting using various types of algorithms.

### **COURSE OUTCOMES (COs): (3-5)**

The	students	xx/i11	he	able	to
- i ne	singenis	WIII	ne	ame	10

CO1	Develop basic C++ programs to access arrays using control statements
CO2	Construct code using functions and initialize objects using constructor destructor
CO3	Formulate programs to implement stack and queue using array and pointers
CO4	Write programs to execute single and double linked list
CO5	Create various sorting and tree traversal algorithms to solve problems

### **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	3	3	2	2	3
CO2	3	3	3	3	3	2	2	2	3	2	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3
CO4	3	3	3	3	3	3	2	2	3	2	2	2
CO5	3	3	3	3	3	3	2	2	3	2	2	2
COg / DSOg		DSO	1		DC	$\overline{\Omega}$		DC	103		DSO	1

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	3
CO2	3	2	3	3
CO3	3	2	3	3
CO4	3	2	3	2
CO5	3	2	3	2

### 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
							<b>✓</b>		



BEC18L16 C++ and Data Structures Lab	0 0/0 3/0	1
--------------------------------------	-----------	---

- 1. IMPLEMENTATION OF CONTROL STATEMENTS
- 2. IMPLEMENTATION OF ARRAYS (SINGLE AND MULTI-DIMENSIONAL)
- 3. IMPLEMENTATION OF CONSTRUCTOR AND DESTRUCTOR
- 4. IMPLEMENTATION OF OVERLOADING FUNCTIONS.
- 5. CONCEPT OF INHERITANCE
- 6. IMPLEMENTATION OF STACK (USING ARRAYS AND POINTERS)
- 7. IMPLEMENTATION OF QUEUE (USING ARRAYS AND POINTERS)
- 8. SINGLE LINKED LIST
- 9. DOUBLY LINKED LIST
- 10. BINARY TREE TRAVERSALS
- 11. BINARY SEARCH TREE
- 12. QUICK SORT
- 13. HEAP SORT
- 14. MERGE SORT

Total no. of hours: 45

### **References:**

Subject C BEC18L1				ct Name: na & Wave Propagation Lab  T / L T/SLr P/R L/ ETL							P/R	С			
			erequisi ansmiss			gnetic w	aves a	nd		Lb	0	0/0	3/0	1	
L : Lecture T/L/ETL :							P : Proj	ect R:	Resear	ch C: C	redits				
OBJECT	IVE:	То а	nalvze	study :	and plo	ot the r	adiatio	n natte	erns of	differe	nt cate	gories (	of anter	nnas	
									pplicat			801108			
COURSE The Studen				: (3-5	5)										
CO	1	Analy		plot the	e radiat	ion patt	ern of s	simple	dipole, l	half wa	ve dipo	le and f	olded di	pole	
CO2	2	Discu	Discuss and plot the radiation pattern of 5 element Yagi Uda, log periodic helical antennas.												
CO3	3	Describe and plot the radiation of and different types of antenna array parabolic antenna and analyze various types of parabolic reflectors with their feed systems antenna array.													
Mapping	of Cou									<u> </u>			•		
COs/P	Os	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 1	PO12	
CO1	1	3	3	3	3	3	1	2	2	2	1	2		2	
CO2		2	3	3	3	3	1	1	2	2	2	1		1	
CO3		3	3	3	2	3	1	1	1	1	1	2		2	
COs / P			PSO1	L		PS			P	SO3			PSO4		
CO1			3			3				2			<u>l</u>		
CO2			3			2				2 2			1 1		
3/2/1 indic		rength		relatio	n 3-	High, 2		um, 1-	Low						
	g g and ices		,	Open Electives Practical / Project			/ S /		80						
Category	Basic Science		Engineering Sciences	Humanities a	Social Scier	Program Co	Prooram	Electives	Open Electi		Practical Project	Internships /		Soft Skills	

BEC18L17	ANTENNA & WAVE PROPOGATION LAB	0 0/0 3/0 1

- 1. TO STUDY AND PLOT THE RADIATION PATTERN OF SIMPLE DIPOLE ANTENNA.
- 2. TO STUDY AND PLOT THE RADIATION PATTERN OF HALF WAVE DIPOLE ANTENNA.
- 3. TO STUDY AND PLOT THE RADIATION PATTERN OF FOLDED DIPOLE ANTENNA.
- 4. TO STUDY AND PLOT THE RADIATION PATTERN OF 5 ELEMENT YAGI UDA ANTENNA.
- 5. TO STUDY AND PLOT THE RADIATION PATTERN OF LOG PERIODIC ANTENNA.
- 6. TO STUDY AND PLOT THE RADIATION PATTERN OF HELICAL ANTENNA.
- 7. TO STUDY AND PLOT THE RADIATION PATTERN OF CUT PARABOLIC ANTENNA WITH SIMPLE DIPOLE FEED.
- 8. TO STUDY VARIOUS TYPES OF PARABOLIC REFLECTORS AND THEIR FEED SYSTEMS.
- 9. TO STUDY AND PLOT THE RADIATION PATTERN OF BROAD SIDE ANTENNA ARRAY.
- 10. TO STUDY AND PLOT THE RADIATION PATTERN OF END FIRE ANTENNA ARRAY.

Total no. of hours: 45

#### **References:**

Subject Code: BEC18L18		Sys	stems	Lab		mmuni				T / L/ ETL	L	T/SLr	P/R		С
			requisi mmuni		nmunic	ation T	heory,	Digital		Lb	0	0/0	3/0	0	1
L : Lecture T :							P : Proj	ect R	Resear	ch C: C	redits		-		
	/ETL : Theory/Lab/Embedded Theory and Lab														
	DBJECTIVE:														
• To motivate the students about the practical applications of telecommunication switching															
systems															
COURSE OUTCOMES (COs): (3-5)															
The Students will be able to															
CO1	De	Demonstrate the operation of EPABX system													
CO2	Ar	nalyz	ze the	differe	nt mod	dulation	n and r	nultipl	le acces	s techi	niques				
CO3	De	evelo	op a pr	ogram	to dig	itize au	idio sig	gnals							
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	.1	PO1	2
CO1		1	1	2	2	2	2	1	1	1	1	1		2	
CO2		2	2	2	3	3	1	2	2	2	2	2		3	
CO3		2	2	3	3	3	2	2	3	1	2	1		2	
COs / PSOs			PSO1			PS			P	SO3			PSC	)4	
CO1			1			2				2			2		
CO2			2			3				2			3		
CO3	G4	trength of Correlation 3- High, 2- Medium, 1-Low							<del>-</del>	2			2		
3/2/1 indicates	Stren	igtn	oi Cor	relatio	n 3-1	Hign, 2	- Mear	um, 1-	Low			1			
Category	Category  Basic Sciences  Engineering Sciences and Social Sciences Program Core Program Electives		Electives	Open Electives Practical / Project		Practical / Project	Internships / Technical Skill		Soft Skills	!					
										✓					

BEC18L18	Telecommunication Switching Systems Lab	0 0/0 3/0 1
----------	-----------------------------------------	-------------

#### STUDY OF EPABX SYSTEM AND ITS FEATURES.

- 1. TO PERFORM PCM.
- 2. TO PERFORM SIMULATION OF FDMA
- 3. TO WRITE AND ANALYZE TRAFFIC MEASUREMENT.
- 4. TO STUDY ,PERFORM SOUND ,SPEECH ,DIALER AND KEY BOARD MATRIX SECTION OF TELEPHONE
- 5. TO STUDY, PERFORM VOLTAGE DROPPER, LINE IN/PROTECTOR AND RINGER SECTION OF TELEPHONE.
- 6. TO IMPLEMENT A BASIC SWITCHING SYSTEM USING SIMULINK.
- 7. SIMULATION OF TIME SLOT INTERCHANGE ALGORITHM
- 8. TO PERFORM DIGITIZATION OF SPEECH SIGNAL BY WRITING PROGRAM IN SCILAB / MATLAB.
- 9. TO STUDY AND PERFORM TDM PCM

Total no. of hours: 45

#### **References:**



Subject C BEC18L1		Subject Name : Audio Signal Processing Lab  T / L T/SLr P/R C L/ ETL													
		Prerequisite: Communication Lab I Lb 0 0/0 3/0 1													
L : Lecture		ıtorial	SLr:	Superv	ised L	earning		oject F	R : Rese	arch C:					
T/L/ETL:	•	y/Lab/l	Embead	ied i ne	eory an	a Lab									
OBJECT		ve students a hands on experience in audio processing and its usage in real time													
	_	cenarios.													
COURSE	COURSE OUTCOMES (COs): (3-5)														
The Stude	ents will be able to														
CO1		Using	MAT	LAB e	stimat	e pitch	and h	armon	ic noise	e ratio	in audi	o signa	ls		
CO2		Apply	y Fouri	er tran	sform	and Cl	roma	feature	es for a	nalyzii	ng aud	io signa	ıls.		
CO3		Exam	nine the	enhar	ncemer	nt of sp	eech s	ignal ι	ısing m	icroph	one ar	rays.			
CO4		Tabulate the results for audio signal experiments using statistical method													
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	O12	
CO1		3	3	2	3	1	2	2	2	2	2	2		2	
CO2		3	3	2	3	1	2	2	2	2	2	2		2	
CO3		3	3	2	3	2	2	2	2	2	2	2		2	
CO4		3	3	1	3	1	2	1	2	2	2	2		2	
COs / PS			PSO1			PS			I	PSO3			PSO4		
CO1			3			3				3			3		
CO2			3			3				2 2			2		
CO3			3			3				2			2 2		
3/2/1 indic		trengt		rrelati	on 3.	- High,		dium	1.Low						
JI AI I III III	cares B	liciigi	11 01 00	, i ciati	<u> </u>	ıııgıı,	1/10	uiuiii, .	1.170 #	<u> </u>	1.3				
Category	Basic Sciences	Engineering Sciences Humanities and Social Sciences				Program Core	I	Program Electives	Open Electives	•	Practical / Project	Internships /	Technical Skill	Soft Skills	
			I H. So eq O To												



BEC18L19	Audio Signal Processing Lab	0 0/0 3/0 1

- 1. BASICS OF MATLAB
- 2. PITCH ESTIMATION AND HARMONIC TO NOISE RATIO ESTIMATION
- 3. SHORT-TIME FOURIER TRANSFORM AND CHROMA FEATURES
- 4. SPEECH ANALYSIS
- 5. SPEECH ENHANCEMENT USING MICROPHONE ARRAYS
- 6. STATISTICAL METHODS FOR AUDIO EXPERIMENTS

Total no. of hours: 45

### **References:**



# **OPEN ELECTIVES**

Subject Co BEC18OF			Applica	tions		net of Th	ings and	l its		T/L/			P/R	С	
			Prerequi							Ту		0/0	0/0	3	
L : Lecture T/L/ETL :							: Projec	t R:I	Research	C: Cred	its				
OBJECTI	IVES	5:													
• To	stud	ly basi	es of IoT.												
• To	stud	ly IoT	with Clou	d envir	onment										
• To	stud	ly IoT	applicatio	ns.											
COURSE	OUT	ГСОМ	ES (COs	3):(3-	5)										
The studen	nts wi	ill be a	ble to												
CO1	1	Ex	plore bas	ics cond	cepts of	technolo	gy of Io	Т							
CO2	2	Uı	nderstand	differe	nt IoT c										
CO3	3	M	anage sys	nage system data in cloud environment											
CO4	1	In	nterface embedded system with IoT												
COS	5	Le	arn new a	pplicat	ions ba	sed on Io	T.								
Mapping	of Co	ourse (	Outcomes	with F	Program	n Outco	mes (PC	s)							
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	012	
CO1		3	3	3	3	3	2	3	2	2	2	3		3	
CO2		3	2	2	3	3	2	2	2	2	2	3		3	
CO3		3	2	3	3	3	2	2	2	2	2	3		3	
CO4		3	3	2	3	3	2	2	2	1	2	3		3	
CO5		3	2	3	3	3	2	2	2	1	2	3		3	
COs / PS	Os		PSO1			PSO2			PSO:	3		PS	SO4		
CO1			3			3			3 2				3		
CO ₂			3			3			2				3 3		
CO4			3			3			2				3		
CO5			2			3			1				3		
3/2/1 indic	cates	Streng		rrelatio	on 3-	High, 2-	Mediur	n, 1-L	ow		I				
Category			Humanities	and Social Sciences	Program Core	Program	Electives	Open Electives	Practical /	Internships /	Technical Skill		Soft Skills		



BEC18OE1	INTERNET OF THINGS AND ITS APPLICATIONS	3	0/0	0/0 3

#### UNIT I INTRODUCTION TO INTERNET OF THINGS

9 Hrs

Definition and Characteristics of IoT – Things in IoT – IoT Protocols – Logical Design of IoT – IoT enabling technologies – IoT Levels.

### UNIT II DOMAIN SPECIFIC IoT

9 Hrs

Home Automation – Cities – Environment – Energy – Retail – Logistics – Agriculture – Industry – Health and Life style–SDN and NFV for IoT.

#### UNIT III IOT SYSTEM MANAGEMENT AND CLOUD

9 Hrs

Need for IoT System Management  $\,$  - SNMP - NETOPEER - IoT design methodology  $\,$  -  $\,$  Xively - Django-Amazon Web for IoT - Sky Net IoT.

#### UNIT IV IoT PHYSICAL DEVICES

9 Hrs

Raspberry Pi - Raspberry Pi Interfaces - Arduino boards - Other IoT devices - Intel Galileo Arduino board Specification.

#### UNIT V IOT APPLICATIONS

9 Hrs

Applications based on IoT - Smart Cities -Smart Home and Buildings -Smart Energy and the Smart Grid - Smart Health- Smart Transportation and Mobility

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **Textbooks:**

- 1. Arshdeep Bahga. Vijaymadisetti, " *Internet of things A hands- on approach*", Universities press, First Editon, 2015.
- 2. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiley, First edition 2014.
- 3. C Hillar Gastn, "Internet of Things with Python", Packt publishing, first edition ,2016.

#### **Reference Books:**

- 1. Dominique D. Guinard and Vlad M. Trifa "Building the Web of Things With examples in Node.js and Raspberry Pi", June 2016 ISBN 9781617292682
- 2. Charalampos Doukas, "Building Internet of Things with the Arduino" ISBN/EAN13:1470023431 / 9781470023430
- 3. Gastón C. Hillar, "Internet of Things with Python", May 2016, PACKT Publishing limited.
- 4. Marco Schwartz "Internet of Things with the Raspberry Pi: Build Internet of Things Projects Using the Raspberry Pi Platform", Kindle Edition.



Subject Code: BEC18OE2	Subject Name : Cellular Mobile Communication	T / L/ ETL	L	T/SLr	P/R	С
	Prerequisite: None	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

### **OBJECTIVES:**

- It deals with the fundamental cellular radio concepts such as frequency reuse and hand off.
- It presents different ways to radio propagation models and predict the large scale effects of radio propagation in many operating environment.

## COURSE OUTCOMES (COs): (3-5)

The students	will	be a	ble to	
--------------	------	------	--------	--

CO1	Interpret basic concepts in mobile communication.
CO2	Apply the concepts in establishing a PSTN.
CO3	Recognize basic concepts in cellular technology.
CO4	Analyze different propagation models for improving system coverage.
CO5	Examine the latest wireless systems and standards.

## **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	3	3	3	3	1	3	1	2	
CO2	3	3	3	1	2	2	2	3	2	2	2	2	
CO3	3	3	3	3	3	3	1	1	3	3	2	3	
CO4	3	3	3	3	3	3	3	2	3	3	3	3	
CO5	3	3	3	2	3	2	3	3	3	3	3	3	
COs / PSOs		PSO1			PSO2			F	PSO3		PSO4		
CO1		3			2			2			2		
CO2		3			3				2		2		

2/2/1 : 1: 4 (	N4	2 II:-L 2 M-1:	1 T	
CO5	3	3	3	3
CO4	3	3	2	3
CO3	3	3	3	3
CO2	3	3	2	2
CO1	3	2	2	2

### 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
						<b>~</b>			



BEC180E2 CELLULAR MOBILE COMMUNICATION	3 0/0 0/0 3
----------------------------------------	-------------

#### UNIT I INTRODUCTION TO MOBILE COMMUNICATION

9Hrs

History and Evolution of mobile radio system – Types of mobile wireless system/services – Paging, cellular, WLL, FTTH, Wi-Fi, and Future trends in Personal wireless system.

#### UNIT II PSTN TECHNOLOGY

9 Hrs

Difference between simplex, half-duplex and duplex transmissions – basic understanding of telephone set – history and evolution of Central Exchange Switching – Operator Switch Boards (PBX) – intraoffice and interoffice calls – Extended Area Service (EAS) – circuit switching, packet switching & TDM switching – DTMF signaling – dial register – in band & out-of-band signaling.

#### UNIT III CELLULAR CONCEPT

9 Hrs

Structure of a cell – Basic cellular terminologies – Principle of Frequency Reuse – Principle of Channel assignment and its types – Types of channel interference – Different types of handoff strategies

### UNIT IV INTERFERENCE AND MOBILE RADIO COMMUNICATION

9 Hrs

Interferences in Cellular Systems – Methods to improve cell coverage - Free space propagation model, reflection, diffraction, scattering, link budget design, Outdoor Propagation models and Indoor propagation models

#### UNIT V WIRELESS SYSTEMS AND STANDARDS

9 Hrs

GSM, IS-95, DECT, AMPS, GPRS, UMTS, WLAN, WPAN, WMAN, Ultra Wideband communications, 4G/LTE and beyond 4G.Telecom standards and wireless standards.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **TEXT BOOKS:**

- 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and Internet", Pearson Education, 2nd edition, 2008.
  - 2. Anu A. Gokhale, "Introduction to Telecommunications", Delmar, 2nd edition, 2005.
  - 3. T.S. Rappaport, "Wireless Communication, Principle and Practice", Prentice Hall, NJ, 1996
  - 4. Roy Blake," Wireless Communication technology", Thomson Learning, 1st Edition 2001

### **REFERENCES:**

- 1. Pete Moulton, Jason Moulton, "The Telecommunication Survival Guide", Pearson Education, 2001.
- 2. Roger L. Freeman, "Telecommunication System Engineering", Wiley-India, 4th edition, 2004.
- 3. W.C.Y. Lee, "Mobile Communication Engineering", (2/e), McGraw-Hill, 1998.
- 4. Dharma P. Agarwal," Introduction to wireless and Mobile systems", Thomson Learning, II Edition, 2006



Subject © BEC180		Su	ıbject N	Name :	Satellit	te and i	ts App	lication		Γ/L/ ETL	L	T/SLr	P/R	С
		Pr	erequis	ite: No	ne				,	Гу	3	0/0	0/0	3
L : Lectu T/L/ETL				-			_	roject	R : Res	earch (	C: Cred	its		•
OBJECT		•												
						ecraft sı								
									system					
	•	To ap	ply the	princip	ole of sa	atellite i	n remo	te sens	ing tech	nology	•			
COURS	E OUT	COM	IES (C	Os):										
The stude			•	,										
CO1	Under	stand	the pri	nciple (	of orbit	al mech	anics							
CO2						lite syst								
CO3						•								
CO4	•	palyze the various domestic satellite systems  oply the concepts in designing earth station												
CO5	11 0							consin	~					
						llites in								
Mapping	g of Co	urse (	Outcon	nes witl	h Prog	ram Oı	ıtcome	s (POs	)					
COs/P	Os 1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 I	PO12
CO1		3	1	1	2	1	3	1	1	1	2	3		1
CO2		3	3	1	1	1	1	3	1	3	1	1		2
CO3		3	1	1	1	1	2	1	3	1	3	1		1
CO4		3	1	3	3	2	1	1	1	1 2	1	1		3
COs / PS		3	PSO1	-	3	PSC	_		_	SO3	1		PSO4	1
CO ₁			3	•		1	,		1.	2			1	
CO2			3			3				1			1	
CO3			3			1				2			2	
CO4			1			3				1			3	
CO5			3			1				1			3	
3/2/1 ind	icates S	Stren	gth of (	Correla	tion	3- Higl	1, 2- M	edium,	, 1-Low	,			•	
Category	Basic Sciences		Engineering Sciences	Humanities	and Social Sciences	Sciences Program Core		Flectives	Open Electives		Project	Project Internships / Technical Skill		Soft Skills
$\overline{}$	2	1		ΙÍ	ar	r0		- ш	be	۲	거	<u> </u>		S



BEC18OE3	SATELLITE AND ITS APPLICATIONS	3 0/0 0/0 3

#### UNIT I ELEMENTS OF ORBITAL MECHANICS

9 Hrs

Kepler's laws of planetary motion - Newton's laws of gravitation- Orbital Equation- Orbital Elements-Orbital Perturbation; Tracking and Orbital Determination- Orbital Correction / Control

#### UNIT HELEMENTS OF SATELLITE SYSTEM

9 Hrs

Space Environment- Spacecraft Configuration- Spacecraft Subsystem- Payload- Reliability Consideration – Spacecraft Integration and Testing.

#### UNIT III DOMESTIC SATELLITE SYSTEMS AND LAUNCH VEHICLES

9 Hrs

The INSAT System- International System: INTELSAT- IMMARSAT- Satellite Based Personal Communication- LEO- MEO- GEO Systems- PSLV and GSLV

#### UNIT IVEARTH STATION DESIGN

9 Hrs

Earth Station Configuration- Receiver and Transmitter Subsystems- Terminal Equipment: Telephone / Video Interface-Echo Suppressor- FM Digitizers- Elements of Frequency Co-ordination and Control.

#### UNIT VAPPLICATIONS OF SATELLITES

9 Hrs

Satellite Broadcasting- Satellite TV Systems. Remote sensing satellites - satellite remote sensing in various important areas- such as environmental issues- agriculture- forestry- urban issues and water management - usage of satellite data models in remote sensing- analysis of data from various climate zones and applications in research and society.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **TEXT BOOKS:**

- 1. T. Pratt and C.W. Bostian, "Satellite Communication" John Wiley & Son- 1986.
- 2. A. Abdul Namith, "Satellite Communication" Lakshmi Publications.

#### **REFERENCES:**

- 1. B.N. Agarwal, "Design of Geosynchronous Spacecraft", prentice Hall- 1986.
- 2. D. Roddy, "Satellite Communication", Prentice Hall- 1989.
- 3. M. Richharia "Satellite Communication Systems Design Principles" Macmillan Press Ltd. Second Edition 2003.
- 4. http://www.ceinsys.com/blog/applications-of-satellite-imagery-remote-sensing-data/

Subject Co BEC18OE			Subject	Name :	Funda	mentals	of Senso	ors		T / L ETL	/ L	T/S Lr	P/R	С
			Prerequis	site: No	ne					Ту	3	0/0	0/0	3
L: Lecture T/L/ETL: 7							: Project	R: F	Research (	C: Credit	S		1	
OBJECTIV	VES:													
	• T	o uno	derstand	basic fu	ndamer	ntals of s	ensor.							
	• T	o stu	dy senso	r charac	eteristics	S.								
					oroperti	es of eler	ments.							
COURSE				s):										
The student	s will													
CO1		Inte	erpret ba	sics of s	ensors.									
CO2		Rec	cognize s	ensor cl	haracter	ristics.								
CO3		Dei	monstrat	e sensor	proper	ties.								
CO4		Exp	plain prin	nciples o	of sensin	ng.								
CO5		Stu	dy vario	us senso	r eleme	ents.								
Mapping o	f Cou	rse C	Outcome	s with F	rogran	n Outco	mes (PO	s)						
COs/POs	P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	.0 PC	)11	PO12
CO1		3	2	3	3	2	1	2	1	1	2		2	2
CO2		3	2	2	3	2	1	2	1	2	2		2	2
CO3		3	2	2	2	2	2	2	1	2	2		2	3
CO4		2	2	2	2	2	1	1	2	1	2		2	3
CO5		2	2	2	2	2	1	1	2	1	2		2	2
COs / PSO	S		PSO1			PSO2	2		PSO	3		F	<b>SO4</b>	
CO1			3			2			2				3	
CO2			3			3			2 2				3	
CO4			3			3			2				3	
CO5			2			2			3				3	
3/2/1 indica	ates M	Stre		Correla	ation 3		2- Medi	um, 1-						
			50									_		
Category	Basic	Sciences	Engineering Sciences	Humanities	and Social Sciences	Program Core	Program	Electives	Open Electives	Practical /	Project	Internships Technical	SKIII	Soft Skills
-			ഥ		а				-	-		II.		<b>9</b> 1



BEC18OE4	FUNDAMENTALS OF SENSORS	3 0/0 0/0 3

#### UNITI SENSOR FUNDAMENTALS

9 Hrs

Basic Sensor Technology - Sensor Systems - Sensor Characteristics - Signals, and Systems - Sensor Classification

#### UNITII SENSOR CHARACTERISTICS

9 Hrs

Transfer Function - Span (Full-Scale Input) - Full-Scale Output - Accuracy- Calibration -- Calibration Error -- Hysteresis - Nonlinearity - Saturation

### UNITIII SENSOR PROPERTIES

9 Hrs

Repeatability - Dead Band - Resolution - Special Properties - Output Impedance - Excitation .- Dynamic Characteristics - Environmental Factors - Reliability

#### UNITIV PHYSICAL PRINCIPLES OF SENSING

9 Hrs

 $Electric\ Charges,\ Fields,\ and\ Potentials\ -\ Capacitance-Magnetism-Induction-Resistance\ -\ Piezoelectric\ Effect\ -$ 

### UNITY SENSOR ELEMENTS

9 Hrs

Mechanical Elements - Thermal Elements - Electrical Elements - Application Characteristic - Uncertainty

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

### **TEXTBOOKS:**

- 1) Jacob Fraden, "Handbook Of Modern Sensors Physics, Designs, And Applications"
- 2) Jon S. Wilson," Sensor Technology Handbook

#### **REFERENCE BOOK:**

 Ian Sinclair , "Sensors and Transducers" eBook ISBN: 9780080516998 Hardcover ISBN: 9780750649322



Subject Code: BEC18OE5	Subject Name : Basics of Microprocessor and Microcontroller	T / L/ ETL	L	T/SL r	P/R	С
	Prerequisite: None	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

### **OBJECTIVES:**

- To study the architecture, addressing modes, and assembly language program of 8085 microprocessor.
- To understand the concepts of different peripherals and their applications
- To learn the functions of 8051 microcontroller.

### **COURSE OUTCOMES (COs):**

The students v	will be able to
CO1	Write assembly language program in 8085 and 8086 and understand the design of advanced
	processors.
CO2	Show their ability to interface peripherals with microprocessors
CO3	Done the inference of advanced peripheral with 8085.
CO4	Demonstrate their skills in writing an ALP in 8051.
CO5	Apply their understanding to do a project to develop an application using 8085.

### **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	2	2	3	1	1	1	2	2	1	
CO2	3	3 3 3			3	3	1	2	1	2	2	2	
CO3	2	2 2 2			3	3	2	3	1	2	3	2	
CO4	3	3 3 3		3	3	1	2	3	1	2	1	3	
CO5	3	3 2 1		2	2	2	3	1	3	2	3	3	
COs / PSOs		PSO	1		PSO2			PS	O3		PSC	)4	
CO1		3			3			2			1		
CO2		3			3			1			1		
CO3		2			3			1			2		
CO4		3			2			1			2		
CO5		1			1			2	)		3		

# H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
						✓			

BEC18OE5	BASICS OF MICROPROCESSOR AND	3	0/0	0/0	3
	MICROCONTROLLER				

UNIT-I 8085 CPU 9 Hrs

 $Internal\ Architecture\ of\ 8085\ microprocessor-Instruction\ set-Addressing\ modes-8085\ interrupts-Timing\ diagram-Assembly\ level\ programming.$ 

### UNIT II PHERIPHERALS INTERFACING

9 Hrs

USART (8251) – Programmable interval timer (8353/8254) programmable peripheral interface (8255) – CRT controller (8275/6845) – Floppy disk controller (8272).

#### UNIT III ADVANCED PHERIPHERALS INTERFACING

9 Hrs

Programmable DMA controller (8257) – Programmable Interrupt controller (8259) – Keyboard display interface (8279) – ADC/DAC interfacing.

#### **UNIT IV8051 MICROCONTROLLER**

9 Hrs

8051 Microcontroller hardware and Architecture –I/O pins, Ports and circuits–Counters and Timers-Serial Data I/O – Interrupts - 8051 Instruction set – Addressing Modes –Assembly Language Programming.

#### UNIT V 8085 APPLICATIONS

9 Hrs

Typical application of 8085 – Stepper motor controls – Traffic light controls – waveform generation – Analog interfacing and industrial control – Microcomputer based system with seven segment displays and switches.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **TEXT BOOKS:**

- 1. Ramesh s. Gaonkar, Microprocessor Architecture Programming and Applications with 8085. Fourth edition, Penram international publishing 2000.
- 2. Douglas V. Hall, microprocessor and interfacing, programming and hardware, Tata McGraw Hill, second edition 1999.

### **REFERENCES:**

- 1. A. K. Ray and K. M. Burchandi,"Intel Microprocessors Architecture Programming and Interfacing" McGraw Hill International edition, 2000.
- 2. Kenneth Jayala, "The 8051 Microcontroller Architecture Programming and Application" ,2nd edition ,Penram International publishers (India), New Delhi,1996.
- 3. M. RafiQuazzaman, "Microprocessors Theory and Applications", Intel and Motorola prentice Hall of India
  - , Pvt. Ltd., New Delhi, 2003



Subject Code:	Subject Name : Industry 4.0 Concepts	T/L/	L	T/SL	P/R	С
BEC18OE6		ETL		r		
	Prerequisite: None	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

### **OBJECTIVES:**

- Students will demonstrate an understanding of the fundamentals of the core areas in Industry 4.0.
- Students will gain deep insights into how smartness is being harnessed in industries

COURSE OUTCO	OMES (COs): (3-5)
The Students will b	be able to
CO1	Understand the opportunities and challenges in the fourth industrial revolution.
CO2	Describe, discuss and relate IoT techniques adopted for an industry.
CO3	Demonstrate the importance of various technologies involved in enabling industry 4.0.
CO4	Analyze the power of Cloud Computing in a networked economy.
CO5	Interpret technologies available in IoT.

## **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	3	3	3	3	2	3	3
CO2	3	2	2	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3	3	3
CO5	2	2	3	3	3	3	3	3	3	3	3	3
COs / PSOs		PSO1			PSO	2		PSC	03		PSO4	,
CO1		2			2			3			3	
CO2		2			2			3			3	

COS / 1 505	1301	1502	1303	1504
CO1	2	2	3	3
CO2	2	2	3	3
CO3	3	3	3	3
CO4	2	2	3	3
CO5	2	2	3	3
2/2/1 indicated	Strongth of Convolution	2 Uigh 2 Modium 1	Low	

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills
						✓			



BEC180E6 INDUSTRY 4.0 CONCEPTS 3 0/0 0/0 3

### **UNIT I** Introduction to Industry 4.0

9 Hrs

The various Industrial Revolutions – Digitalization and the Networked Economy – Drivers, Enablers, Compelling Forces and Challenges for Industry 4.0 – The Journey so far: Developments in USA, Europe, China and other countries – Comparison of Industry 4.0 Factory and Today's Factory – Trends of Industrial Big Data and Predictive Analytics for Smart Business Transformation.

### **UNIT II** Road to Industry 4.0

9 Hrs

Internet of Things (IoT) & Industrial Internet of Things (IIoT) & Internet of Services – Smart Manufacturing – Smart Devices and Products – Smart Logistics – Smart Cities – Predictive Analytics

### **UNIT III** Technologies for enabling Industry 4.0

9 Hrs

Cyber physical systems – Robotic Automation and Collaborative Robots – Support System for Industry 4.0 – Mobile Computing – Related Disciplines – Cyber Security.

UNIT IV Resources 9 Hrs

Resource- based view of a firm - Data as a new resource for organizations - Harnessing and sharing knowledge in organizations - Cloud Computing Basics - Cloud Computing and Industry 4.0- Smart Factories

### **UNIT V IIoT Technologies**

9 Hrs

Industry 4.0 laboratories –IIoT Reference Architecture – Designing Industrial Internet Systems – Examining the Middleware Transport Protocols – IIoT WAN Technologies and Protocols - Securing the Industrial Internet.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total no. of hours: 45

#### **TEXT BOOKS:**

- 1. Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing the Digital Transformation", Springer Series in Advanced Manufacturing.
- 2. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A press Publications.

#### **REFERENCE:**

1. Rajesh Agnihotri and Samuel New, "Industry 4.0 Data Analytics", CreateSpaceIndependent Pub (US)



# **OPEN LABS**

Subject Code: BEC18OL1	St	ıbject N	lame: S	Sensor	s and Io	T Lab		T / L/ ETL	L	T/SLr	P/R	С	
	Pr	erequisi	te: Nor	ie					Lb	0	0/0	3/0	) 1
L: Lecture T: T					_	: Proj	ect R:	Resear	ch C: C	redits			
T/L/ETL : Theor	y/Lab/E	mbedde	d Theo	ry and	Lab								
<b>OBJECTIVES:</b>													
<ul> <li>To design experiments based on IOT with cloud environment</li> </ul>													
<ul> <li>To design experiments based on IOT with cloud environment.</li> <li>COURSE OUTCOMES (COs): (3-5)</li> </ul>													
The Students wil			: (3-5	)									
CO1		mplement C source code to interface sensors with IOT.											
CO2		esign simple projects using different typessensors.											
CO3	Interf	ace sen	sor dat	e with	cloud	enviro	nment.						
CO4	Imple	plement using sensors an application.											
CO5	Desig	resign new applications using different sensors.											
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12
	1	2											
CO1	3	3	3	3	3	1	2	1	2	2	3		3
CO2 CO3	3	2 2	3	3	3	1	2	1	2	2 2	3		3
CO4	3	2	2	3	3	2	2	1	2	2	3		3
CO5	3	2	3	3	3	1	2	1	2	2	3		2
COs / PSOs		PSO	<u> </u>		PSO	02		P	SO3			PSO	
CO1		3			3	}			2			3	
CO2		3			3				2			3	
CO3		3			3				2			3	
CO4		3			3				1			3	
CO5		3 3 1 3											
H/M/L indicates	Streng	th of C	orrelat	ion F	I- High	, M- M	ledium	, L-Lov	W				
Category	Sciences	Engineerin g Sciences	Humanitie s and	Social Sciences	Sciences Program Core Program Electives				Open Electives Practical / Project Internships / Technical Skill			Skill	Soft Skills
									✓				



BEC18OL1	SENSORS AND IOT LAB	0 0/0 3/0 1
----------	---------------------	-------------

- 1. TO FAMILIARIZE WITH INTEL GALILEO GEN2 BOARD AND UNDERSTAND THE PROCEDURE OF CREATION AND COMPILATION OF C SOURCE CODE. (PRE-LOADED EXAMPLES)
- 2. WRITE A CODE TO CONTROL THE BRIGHTNESS OF LED USINGINTEL GALILEO GEN 2 BOARD.
- 3. TO WRITE C SOURCE CODE TO INTERFACE TEMPERATURE SENSOR WITH INTEL GALILEO GEN 2 AND DISPLAY THE TEMPERATURE ON SERIAL MONITOR.
- 4. TO WRITE C SOURCE CODE TO INTERFACE HUMIDITY SENSOR WITH INTEL GALILEO GEN 2 AND DISPLAY THE TEMPERATURE ON SERIAL MONITOR.
- 5. INTERFACE MOTION SENSOR, WITH INTEL GALILEO GEN 2 TO GIVE ALERT WHEN MOTION IS DETECTED.
- 6. TO WRITE C SOURCE CODE TO INTERFACE SOUND DETECTOR WITH INTEL GALILEO GEN.
- 7. TO WRITE C SOURCE CODE TO INTERFACE ACCELEROMETER WITH INTEL GALILEO GEN 2 AND DISPLAY THE VALUES IN SERIAL MONITOR.
- 8. TO WRITE C SOURCE CODE TO PERFORM GAS SENSOR INTERFACING WITH INTEL GALILEO GEN2 BOARD.
- 9. TO INTERFACE A FLAME AND SMOKE SENSOR WITH INTEL GALILEO GEN 2 IN CLOUD SERVICE.
- 10. DESIGN A SMART LIGHTING SYSTEM USING LIGHT SENSOR, MOTION SENSOR AND INDICATE THE STATUS OF THE LIGHT IN CLOUD SERVICE.

Total no. of hours: 45

#### **References:**

Subject Co BEC18OL		Sı	Subject Name: Robotics Control Lab									T/SI	r P/R	C			
	Prerequisite: None L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Resear												0 3/	0 1			
L : Lecture T/L/ETL : '							P : Proj	ect R	: Resear	ch C: C	Credi	ts					
OBJECTI understand t		ferent r	obotic c	onfigu	rations	and the	ir subsy	stems									
COURSE The Student				):(3-	5)												
CO1		Built simple robots using motor driver IC and sensor module.															
CO2	App	Apply programming knowledge to interface various devices with arduino.															
CO3	Desi	Design robots using timer and delay															
CO4	Dev	elop ar	nd meas	ure the	perforn	nance of	f robots	h.									
Mapping o	of Cou	rse Ot	itcomes	with F	rograr	n Outc	omes (l	POs)									
COs/POs PO1 PO2 P				PO3	PO4	PO5	PO6	PO7	PO8	PO	9 ]	PO10	PO11	PO12			
CO1		3	3	3	2	2	2	2	2	3		2	1	2			
CO2		3	3	3	3	3	1	2	2	3		1	2	2			
CO3		3	3	3	2	3	2	2	1	3		2	2	2			
CO4		3	3	3	3	3	1	2	2	3		1	2	2			
COs / PS	Os		PSO1			PSO2				PSO3			PSO4				
CO1	CO1 3					2				2			3				
CO2			3			3					2			3			
CO3			3			2				2			3				
CO4			3			2					2			2			
3/2/1 indic	ates S	trengt	h of Co	rrelatio	on 3-	High, 2	- Medi	um, 1	-Low				_				
Category Basic Sciences			Engineering Sciences	Humanities and Social Sciences		Program Core		Electives	Open Electives	Descriped /	Practical / Project		Technical Skill	Soft Skills			
										<b>√</b>							



BEC18OL2 ROBOTICS CONTROL LAB	0 0/0 3/0 1
-------------------------------	-------------

- 1. ROBOT CIRCUIT
- 2. BUILD A LIGHT-TRACKING ROBOT
- 3. SIMPLE INSECT ROBOT
- 4. LINE FOLLOWER ROBOT
- 5. TWO-LEGGED WALKING ROBOT
- 6. ROBOT CONTROL USING 555 TIMER
- 7. STUDY OF AVR STUDIO AND CODE DEBUGGING
- 8. INTERFACING SWITCH TO TURN ON BAR GRAPH LEDS. (IMPLEMENTING A "PUSH TO ON" INDICATOR)
- 9. LCD INTERFACING TO DISPLAY ALPHANUMERIC CHARACTERS.
- 10. LCD INTERFACING TO DISPLAYING INTEGER VALUES ON THE LCD.
- 11. GENERATION OF DELAY USING TIMER AND TURNING 'ON' THE BUZZER
- 12. INDICATION OF THE VALUE OF COUNTER ON LCD
- 13. DC MOTOR INTERFACING
- 14. PWM CONTROL OF THE DC MOTOR

Total no. of hours: 45

### **References:**

Subject C BEC18OI		Su	bject N	lame: I	Basics (	of MA			T / L/ ETL	L	T/SLr	P/R	С	
		Pre	erequisi	te: Nor	ne		Lb	0	0/0	3/0	) 1			
L : Lecture	e T : Tu	ıtorial	SLr:	Superv	ised Le	earning	P:Pro	ject R	: Resea	rch C:	Credits		ı	<u>'</u>
T/L/ETL:	Theory	y/Lab/l	Embedo	ded The	eory an	d Lab								
OBJECT	IVES:													
amiliar wit						ol boxes								
exposed to														
amiliar wit	h arith	metic,	logical	and rel	ational	operati	ons on	matrix						
COURSE	OUTO	COME	S (CO	s):(3-	5)									
The Stude														
CO1	1	Adopt	the MA	TLAB	GUI a	nd basic	tool be	oxes						
CO2	]	Identify vector and matrix operations												
CO3	]	Illustrate with programming arithmetic, logical and relational operations on matrix												
Mapping	of Cou	rse Oı	ıtcome	s with 1	Progra	m Out	comes (	(POs)						
COs/Po	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12
CO1		3	3	2	2	3	1	2	2	3	3	3		2
CO2		3	2	3	2	3	1	2	1	3	3	3		2
CO3		3	2	3	3	3	2	2	2	3	3	3		3
COs / PS	SOs		PSO:	1		PSO2						PSO4		
CO1			3			3				2		3		
CO2			3			3				3		3		
CO3			3			3						3		
3/2/1 indic	cates S	trengt	h of Co	rrelati	on 3-	High, 2	2- Medi	ium, 1-	Low					
Category	Sciences		Basic Sciences Engineering Sciences Humanities and		Social Sciences	Program Core		Program Electives	Open Electives		Practical / Project	Internships /	Technical Skill	Soft Skills
ate 	()				; - <u>-</u> -	Ε.		<u>ા</u>	1		a Z	Inter	=	Sof



BEC18OL3	BASICS OF MATLAB	0	0/0	3/0	1	
----------	------------------	---	-----	-----	---	--

- 1. INTRODUCTION TO SDK OF MATLAB
- 2. BASIC SYNTAX AND SCALAR ARITHMETIC OPERATIONS AND CALCULATIONS
- 3. WORKING WITH FORMULAS
- 4. ARITHMETIC OPERATIONS IN MATRIX DATA
- 5. MATRIX OPERATIONS (INVERSE, TRANSPOSE)
- 6. READING AN IMAGE FILE
- 7. READING FROM AND WRITING TO A TEXT FILE
- 8. INTRODUCTION TO TOOLBOXES
- 9. DATA VISUALIZATION AND PLOTTING
- 10. RELATIONAL OPERATORS IN DATA
- 11. LOGICAL OPERATION IN DATA
- 12. LOOPS IN MATLAB
- 13. COMPUTING EIGEN VALUE FOR A MATRIX
- 14. RANDOM NUMBER GENERATION MONTE CARLO METHODS

Total no. of hours: 45

### **References:**